Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Environmental factors influencing heat stress in feedlot cattle.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data from 3 summer feedlot studies were utilized to determine the environmental factors that influence heat stress in cattle and also to determine wind speed (WSPD; m.s(-1)) and solar radiation (RAD; W.m(-2)) adjustments to the temperature-humidity index (THI). Visual assessments of heat stress, based on panting scores (0 = no panting to 4 = severe panting), were collected from 1400 to 1700. Mean daily WSPD, black globe temperature at 1500, and minimums for nighttime WSPD, nighttime black globe THI, and daily relative humidity were found to have the greatest influence on panting score from 1400 to 1700 (R2 = 0.61). From hourly values for THI, WSPD, and RAD, panting score was determined to equal -7.563 + (0.121 x THI) - (0.241 x WSPD) + (0.00082 x RAD) (R2 = 0.49). Using the ratio of WSPD to THI and RAD to THI (- 1.992 and 0.0068 for WSPD and RAD, respectively), adjustments to the THI were derived for WSPD and RAD. On the basis of these ratios and the average hourly data for 1400 to 1700, the THI, adjusted for WSPD and RAD, equals [4.51 + THI - (1.992 x WSPD) + (0.0068 x RAD)]. Four separate cattle studies, comparable in size, type of cattle, and number of observations to the 3 original studies, were utilized to evaluate the accuracy of the THI equation adjusted for WSPD and RAD, and the relationship between the adjusted THI and panting score. Mean panting score derived from individual observations of black-hided cattle in these 4 studies were 1.22, 0.94, 1.32, and 2.00 vs. the predicted panting scores of 1.15, 1.17, 1.30, and 1.96, respectively. Correlations between THI and panting score in these studies ranged from r = 0.47 to 0.87. Correlations between the adjusted THI and mean panting score ranged from r = 0.64 to 0.80. These adjustments would be most appropriate to use, within a day, to predict THI during the afternoon hours using hourly data or current conditions. In addition to afternoon conditions, nighttime conditions, including minimum WSPD, minimum black globe THI, and minimum THI, were also found to influence heat stress experienced by cattle. Although knowledge of THI alone is beneficial in determining the potential for heat stress, WSPD and RAD adjustments to the THI more accurately assess animal discomfort.

          Related collections

          Author and article information

          Journal
          J Anim Sci
          Journal of animal science
          American Society of Animal Science (ASAS)
          1525-3163
          0021-8812
          Mar 2006
          : 84
          : 3
          Affiliations
          [1 ] University of Nebraska, Concord, 68728, USA. tmader@unlnotes.unl.edu
          Article
          84/3/712
          10.2527/2006.843712x
          16478964
          509fb3f9-02e4-4a6c-a35c-645e53246484
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content90

          Cited by211