12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Astronauts well-being and possibly anti-aging improved during long-duration spaceflight

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study assesses how circadian rhythms of heart rate (HR), HR variability (HRV) and activity change during long-term missions in space and how they relate to sleep quality. Ambulatory 48-h ECG and 96-h actigraphy were performed four times on ten healthy astronauts (44.7 ± 6.9 years; 9 men): 120.4 ± 43.7 days (Before) launch; 21.1 ± 2.5 days (ISS01) and 143.0 ± 27.1 days (ISS02) after launch; and 86.6 ± 40.6 days (After) return to Earth. Sleep quality was determined by sleep-related changes in activity, RR-intervals, HRV HF- and VLF-components and LF-band. The circadian amplitude of HR (HR-A) was larger in space (ISS01: 12.54, P = 0.0099; ISS02: 12.77, P = 0.0364) than on Earth (Before: 10.90; After: 10.55 bpm). Sleep duration in space (ISS01/ISS02) increased in 3 (Group A, from 370.7 to 388.0/413.0 min) and decreased in 7 (Group B, from 454.0 to 408.9/381.6 min) astronauts. Sleep quality improved in Group B from 7.07 to 8.36 (ISS01) and 9.36 (ISS02, P = 0.0001). Sleep-related parasympathetic activity increased from 55.2% to 74.8% (pNN50, P = 0.0010) (ISS02). HR-A correlated with the 24-h (r = 0.8110, P = 0.0044), 12-h (r = 0.6963, P = 0.0253), and 48-h (r = 0.6921, P = 0.0266) amplitudes of the magnetic declination index. These findings suggest associations of mission duration with increased well-being and anti-aging benefitting from magnetic fluctuations.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research

          Despite the prevalence of sleep complaints among psychiatric patients, few questionnaires have been specifically designed to measure sleep quality in clinical populations. The Pittsburgh Sleep Quality Index (PSQI) is a self-rated questionnaire which assesses sleep quality and disturbances over a 1-month time interval. Nineteen individual items generate seven "component" scores: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction. The sum of scores for these seven components yields one global score. Clinical and clinimetric properties of the PSQI were assessed over an 18-month period with "good" sleepers (healthy subjects, n = 52) and "poor" sleepers (depressed patients, n = 54; sleep-disorder patients, n = 62). Acceptable measures of internal homogeneity, consistency (test-retest reliability), and validity were obtained. A global PSQI score greater than 5 yielded a diagnostic sensitivity of 89.6% and specificity of 86.5% (kappa = 0.75, p less than 0.001) in distinguishing good and poor sleepers. The clinimetric and clinical properties of the PSQI suggest its utility both in psychiatric clinical practice and research activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Overview of Heart Rate Variability Metrics and Norms

            Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heart Rate Variability : Standards of Measurement, Physiological Interpretation, and Clinical Use

                Bookmark

                Author and article information

                Contributors
                frtotk99@ba2.so-net.ne.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 July 2021
                21 July 2021
                2021
                : 11
                : 14907
                Affiliations
                [1 ]GRID grid.410818.4, ISNI 0000 0001 0720 6587, Executive Medical Center, Totsuka Royal Clinic, , Tokyo Women’s Medical University, Related Medical Facility, ; Sinjuku City, Tokyo Japan
                [2 ]GRID grid.17635.36, ISNI 0000000419368657, Halberg Chronobiology Center, , University of Minnesota, ; Minneapolis, MN USA
                [3 ]GRID grid.62167.34, ISNI 0000 0001 2220 7916, Space Biomedical Research Group, , Japan Aerospace Exploration Agency, ; Ibaraki, Japan
                [4 ]GRID grid.410818.4, ISNI 0000 0001 0720 6587, Department of Medicine, Medical Center East, , Tokyo Women’s Medical University, ; Tokyo, Japan
                [5 ]GRID grid.412754.1, ISNI 0000 0000 9956 3487, Faculty of Education, , Tohoku Fukushi University, ; Miyagi, Japan
                [6 ]GRID grid.143643.7, ISNI 0000 0001 0660 6861, Tokyo University of Science, ; Tokyo, Japan
                Article
                94478
                10.1038/s41598-021-94478-w
                8295322
                34290387
                5083bc05-0053-4218-9112-64a3f7da6a38
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 April 2021
                : 12 July 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuroscience,physiology,climate sciences,environmental sciences,planetary science,cardiology,health care,medical research,astronomy and planetary science,engineering

                Comments

                Comment on this article