1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      EV Charging Strategy Considering Transformer Lifetime via Evolutionary Curriculum Learning-Based Multiagent Deep Reinforcement Learning

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Attention Is All You Need

          The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human-level control through deep reinforcement learning.

            The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning and development in neural networks: the importance of starting small.

              It is a striking fact that in humans the greatest learning occurs precisely at that point in time--childhood--when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language), as investigated in connectionist networks. The networks are trained to process complex sentences involving relative clauses, number agreement, and several types of verb argument structure. Training fails in the case of networks which are fully formed and 'adultlike' in their capacity. Training succeeds only when networks begin with limited working memory and gradually 'mature' to the adult state. This result suggests that rather than being a limitation, developmental restrictions on resources may constitute a necessary prerequisite for mastering certain complex domains. Specifically, successful learning may depend on starting small.
                Bookmark

                Author and article information

                Contributors
                Journal
                IEEE Transactions on Smart Grid
                IEEE Trans. Smart Grid
                Institute of Electrical and Electronics Engineers (IEEE)
                1949-3053
                1949-3061
                July 2022
                July 2022
                : 13
                : 4
                : 2774-2787
                Affiliations
                [1 ]School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
                [2 ]Department of Energy Technology, Aalborg University, Aalborg, Denmark
                Article
                10.1109/TSG.2022.3167021
                507d702a-0a59-4ada-958a-ba576dcb78a8
                © 2022

                https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                History

                Comments

                Comment on this article