3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic analysis of mother-infant gut microbiome reveals global distinct and shared microbial signatures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Emerging evidence indicates maternal microbiota as one major reservoir for pioneering microbes in infants. However, the global distinct and identical features of mother–infant gut microbiota at various taxonomic resolutions and metabolic functions across cohorts and potential of infant microbial prediction based on their paired mother’s gut microbiota remain unclear. Here, we analyzed 376 mother–infant dyads (468 mother and 1024 infant samples) of eight studies from six countries and observed higher diversity at species and strain levels in maternal gut microbiota but not their metabolic functions. A number of 290 species were shared in at least one mother–infant dyad, with 26 species (five at strain level) observed across cohorts. The profile of mother–infant shared species and strains was further influenced by delivery mode and feeding regimen. The mother-sourced species in infants exhibited similar strain heterogeneity but more metabolic functions compared to other-sourced species, suggesting the comparable stability and fitness of shared and non-shared species and the potential role of shared species in the early gut microbial community, respectively. Predictive models showed moderate performance accuracy for shared species and strains occurrences in infants. These generalized mother–infant shared species and strains may be considered as the primary targets for future work toward infant microbiome development and probiotics exploration.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structure, Function and Diversity of the Healthy Human Microbiome

            Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human gut microbiome viewed across age and geography

              Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                7 May 2021
                2021
                7 May 2021
                : 13
                : 1
                : 1-24
                Affiliations
                [a ]APC Microbiome Ireland, University College Cork; , Cork, Ireland
                [b ]Food Biosciences Department, Teagasc Food Research Centre; , Moorepark, Fermoy, Co. Cork, Ireland
                [c ]DuPont Nutrition and Biosciences; , Paris, France
                [d ]Department of Paediatrics and Child Health, University College Cork; , Cork, Ireland
                [e ]INFANT Centre, University College Cork; , Cork, Ireland
                Author notes
                CONTACT Catherine Stanton catherine.stanton@ 123456teagasc.ie APC Microbiome Ireland; , Cork, Ireland
                [*]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-4876-8839
                https://orcid.org/0000-0002-6724-7011
                Article
                1911571
                10.1080/19490976.2021.1911571
                8115609
                33960282
                5079e762-7657-4eba-8bca-ff9b86d7daa6
                © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, Tables: 1, References: 68, Pages: 24
                Categories
                Research Article
                Research Paper

                Microbiology & Virology
                mother,infant,neonate,metagenomics,microbiome,gut,vertical transmission,prediction
                Microbiology & Virology
                mother, infant, neonate, metagenomics, microbiome, gut, vertical transmission, prediction

                Comments

                Comment on this article