0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GATA1 is a transcription factor essential for erythropoiesis and megakaryopoiesis. It has been found that Gata1 gene knockdown heterozygous female (Gata1(G1.05/+)) mice spontaneously develop erythroblastic leukemias. In this study, we have generated a novel Gata1 knockdown erythroblastic cell line, designated GAK14, from the leukemia cells in the Gata1(G1.05/+) mice. Although GAK14 cells maintain immature phenotype on OP9 stromal cells in the presence of erythropoietin and stem cell factor, the cells produce Gr-1-, Mac1-, B220-, CD3e- or CD49b-positive hematopoietic cells when co-cultured with DAS104-8 feeder cells. However, GAK14 cells did not produce erythroid and megakaryocytic lineages, perhaps due to the absence of GATA1. Indeed, GAK14 cells became capable of differentiating into mature erythroid cells when complemented with full-length GATA1 and co-cultured with fetal liver-derived FLS5 stromal cells. This differentiation potential was impaired when GATA1 lacking the N-terminal domain was complemented. The N-terminal domain is known to contribute to the pathogenesis of transient abnormal myelopoiesis and acute megakaryoblastic leukemia related to Down syndrome. These results thus showed that GAK14 cells will serve as a powerful tool for dissecting domain function of GATA1 and that the GATA1 N-terminal domain is essential for the erythroid differentiation of GAK14 cells.

          Related collections

          Author and article information

          Journal
          Genes Cells
          Genes to cells : devoted to molecular & cellular mechanisms
          Wiley
          1365-2443
          1356-9597
          Oct 2013
          : 18
          : 10
          Affiliations
          [1 ] Graduate School of Comprehensive Human Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, 305-8577, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
          Article
          10.1111/gtc.12084
          23890289
          5065fedb-ec2f-432d-96cf-35d047f4f73d
          History

          Comments

          Comment on this article