5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2707358e231">Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology. </p><p class="first" id="d2707358e234">Influenza infection dysregulates airway surface homeostasis through ion channel function decrements. </p>

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Cystic fibrosis.

          Cystic fibrosis is the most common lethal genetic disease in white populations. The outlook for patients with the disease has improved steadily over many years, largely as a result of earlier diagnosis, more aggressive therapy, and provision of care in specialised centres. Researchers now have a more complete understanding of the molecular-biological defect that underlies cystic fibrosis, which is leading to new approaches to treatment. One of these treatments, hypertonic saline, is already in use, whereas others are in advanced stages of development. We review clinical care for cystic fibrosis and discuss recent advances in the understanding of its pathogenesis, implementation of screening of neonates, and development of therapies aimed at treating the basic defect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus.

            Influenza A virus is being extensively studied because of its major impact on human and animal health. However, the dynamics of influenza virus infection and the cell types infected in vivo are poorly understood. These characteristics are challenging to determine, partly because there is no efficient replication-competent virus expressing an easily traceable reporter gene. Here, we report the generation of a recombinant influenza virus carrying a GFP reporter gene in the NS segment (NS1-GFP virus). Although attenuated when compared with wild-type virus, the NS1-GFP virus replicates efficiently in murine lungs and shows pathogenicity in mice. Using whole-organ imaging and flow cytometry, we have tracked the dynamics of influenza virus infection progression in mice. Imaging of murine lungs shows that infection starts in the respiratory tract in areas close to large conducting airways and later spreads to deeper sections of the lungs. In addition to epithelial cells, we found GFP-positive antigen-presenting cells, such as CD11b(+)CD11c(-), CD11b(-)CD11c(+), and CD11b(+)CD11c(+), as early as 24 h after intranasal infection. In addition, a significant proportion of NK and B cells were GFP positive, suggesting active infection of these cells. We next tested the effects of the influenza virus inhibitors oseltamivir and amantadine on the kinetics of in vivo infection progression. Treatment with oseltamivir dramatically reduced influenza infection in all cell types, whereas, surprisingly, amantadine treatment more efficiently blocked infection in B and NK cells. Our results demonstrate high levels of immune cells harboring influenza virus antigen during viral infection and cell-type-specific effects upon treatment with antiviral agents, opening additional avenues of research in the influenza virus field.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cystic fibrosis.

                Bookmark

                Author and article information

                Contributors
                Journal
                JCI Insight
                American Society for Clinical Investigation
                2379-3708
                October 18 2018
                October 18 2018
                October 18 2018
                October 18 2018
                : 3
                : 20
                Article
                10.1172/jci.insight.123467
                6237450
                30333319
                504e73c0-bf7a-4947-9a87-d80a46665660
                © 2018
                History

                Comments

                Comment on this article