7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insights to the Assembly of a Functionally Active Leptospiral ClpP1P2 Protease Complex along with Its ATPase Chaperone ClpX

      research-article
      , , ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leptospira interrogans genome is predicted to encode multiple isoforms of caseinolytic proteases (ClpP1 and ClpP2). The ClpP proteins with the aid of its ATPase chaperone are known to be involved in establishing cellular proteostasis and have emerged as a target for developing new antibiotics. We report the molecular characterization of recombinant ClpP1 (rClpP1) and rClpP2 of Leptospira along with its ATPase chaperone rClpX. The two isoforms of rClpPs when coupled together in an equivalent concentration exhibit optimum activity on small fluorogenic peptide substrates, whereas the pure rClpP isoforms are enzymatically inactive. Isothermal titration calorimetry analysis suggests that the two rClpP isoforms bind each other moderately in a 1:1 stoichiometry with a dissociation constant of 2.02 ± 0.1 μM at 37 °C and is thermodynamically favored. Size exclusion chromatography fractionates the majority of pure rClpP1 at ≥308 kDa (14–21-mer) and the pure rClpP2 at 308 kDa (tetradecamer), whereas the functionally active rClpP isoform mixture fractionates as a tetradecamer. The distinct and unprecedented oligomeric form of rClpP1 was also evident through native-gel and dynamic light scattering. Moreover, the rClpP isoform mixture formed after the site-directed mutation of either or both the isoforms at one of the catalytic triad residues (Ser 98/97 to Ala 98/97) resulted in the complete loss of protease activity. The rClpP isoform mixture gets stimulated to degrade the casein substrate in the presence of rClpX and in an energy-dependent manner. On the contrary, pure rClpP1 or the rClpP2 isoform in association with rClpX are incapable of forming operative protease. The reported finding suggests that in Leptospira, the enzymatic activity of the rClpP protease complex in the presence or absence of cochaperone is performed solely by the tetradecamer structure which is hypothesized to be composed of 2-stacked ClpP heptameric rings, wherein each ring is a homo-oligomer of ClpP1 and ClpP2 subunits. Understanding the activities and regulation principle of multi-isoforms of ClpP in pathogenic bacteria may aid in intervening disease outcomes particularly to the co-evolving antibiotic resistance strains.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How to study proteins by circular dichroism.

            Circular dichroism (CD) is being increasingly recognised as a valuable technique for examining the structure of proteins in solution. However, the value of many studies using CD is compromised either by inappropriate experimental design or by lack of attention to key aspects of instrument calibration or sample characterisation. In this article, we summarise the basis of the CD approach and its application to the study of proteins, and then present clear guidelines on how reliable data can be obtained and analysed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leptospirosis: a zoonotic disease of global importance

              In the past decade, leptospirosis has emerged as a globally important infectious disease. It occurs in urban environments of industrialised and developing countries, as well as in rural regions worldwide. Mortality remains significant, related both to delays in diagnosis due to lack of infrastructure and adequate clinical suspicion, and to other poorly understood reasons that may include inherent pathogenicity of some leptospiral strains or genetically determined host immunopathological responses. Pulmonary haemorrhage is recognised increasingly as a major, often lethal, manifestation of leptospirosis, the pathogenesis of which remains unclear. The completion of the genome sequence of Leptospira interrogans serovar lai, and other continuing leptospiral genome sequencing projects, promise to guide future work on the disease. Mainstays of treatment are still tetracyclines and beta-lactam/cephalosporins. No vaccine is available. Prevention is largely dependent on sanitation measures that may be difficult to implement, especially in developing countries.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                31 July 2019
                31 July 2019
                : 4
                : 7
                : 12880-12895
                Affiliations
                Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
                Author notes
                [* ]E-mail: mkumar1@ 123456iitg.ac.in . Phone: +91-361-258-2230. Fax: +91-361-258-2249.
                Article
                10.1021/acsomega.9b00399
                6682002
                31460415
                503a3e3b-ba53-4574-b462-ff62a1763696
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 12 February 2019
                : 11 July 2019
                Categories
                Article
                Custom metadata
                ao9b00399
                ao-2019-003996

                Comments

                Comment on this article