33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds.

      Biomacromolecules
      Biocompatible Materials, Blood, Blood Vessel Prosthesis, Cell Adhesion, Cells, Cultured, DNA, metabolism, Electrophoresis, Polyacrylamide Gel, Endothelium, Vascular, cytology, Fibroins, Humans, Immunohistochemistry, Lactic Acid, Microscopy, Electron, Scanning, Platelet Aggregation, Polyglycolic Acid, Real-Time Polymerase Chain Reaction, Silk, Spectroscopy, Fourier Transform Infrared

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelialization of vascular grafts prior to implantation has been investigated widely to enhance biocompatibility and antithrombogenicity. Thrombosis of artificial vessels is typically caused by platelet adhesion and agglomeration following endothelial cells detachment when exposed to the shear stress of blood circulation. The present study thus aimed at preventing platelet adhesion and aggregation onto biomaterials before the endothelial confluence is fully achieved. We report this modification of poly(lactic-co-glycolic acid) (PLGA) scaffolds, both to impart hemocompatibility to prevent platelet adhesion and aggregation before the endothelial confluence is fully achieved and to support EC growth to accelerate endothelialization. The modification was achieved by covalent immobilization of sulfated silk fibroin on PLGA scaffolds using γ irradiation. Using phosphate-buffered saline (PBS) as an aging medium, it was demonstrated that the scaffolds prepared by γ irradiation had a good retention of sulfated silk fibroin. The systematic in vitro hemocompatibility evaluation revealed that sulfated silk fibroin covalently immobilized PLGA (S-PLGA) scaffolds-reduced platelet adhesion and activation, prolonged whole blood clotting time, activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). To evaluate further in vitro cytocompatibility of the scaffolds, we seeded vascular ECs on the scaffolds and cultured them for 2 weeks. The ECs were seen to attach and proliferate well on S-PLGA scaffolds, forming cell aggregates that gradually increased in size and fused with adjacent cell aggregates to form a monolayer covering the scaffold surface. Moreover, it was demonstrated through the gene transcript levels and the protein expressions of EC-specific markers that the cell functions of ECs on S-PLGA scaffolds were better preserved than those on PLGA scaffolds. Therefore, this study has described the generation of a vascular graft that possesses the unique ability to display excellent hemocompatibility while simultaneously supporting extensive endothelialization.

          Related collections

          Author and article information

          Comments

          Comment on this article