41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          American College of Sports Medicine position stand. Exercise and fluid replacement.

          This Position Stand provides guidance on fluid replacement to sustain appropriate hydration of individuals performing physical activity. The goal of prehydrating is to start the activity euhydrated and with normal plasma electrolyte levels. Prehydrating with beverages, in addition to normal meals and fluid intake, should be initiated when needed at least several hours before the activity to enable fluid absorption and allow urine output to return to normal levels. The goal of drinking during exercise is to prevent excessive (>2% body weight loss from water deficit) dehydration and excessive changes in electrolyte balance to avert compromised performance. Because there is considerable variability in sweating rates and sweat electrolyte content between individuals, customized fluid replacement programs are recommended. Individual sweat rates can be estimated by measuring body weight before and after exercise. During exercise, consuming beverages containing electrolytes and carbohydrates can provide benefits over water alone under certain circumstances. After exercise, the goal is to replace any fluid electrolyte deficit. The speed with which rehydration is needed and the magnitude of fluid electrolyte deficits will determine if an aggressive replacement program is merited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials.

            The objective of the study was to assess the blood pressure response to changes in sodium and potassium intake and examine effect modification by age, gender, blood pressure, body weight and habitual sodium and potassium intake. Randomised trials of sodium reduction or potassium supplementation and blood pressure were identified through reference lists of systematic reviews and an additional MEDLINE search (January 1995-March 2001). A total of 40 sodium trials and 27 potassium trials in adults with a minimum duration of 2 weeks were selected for analysis. Data on changes in electrolyte intake and blood pressure during intervention were collected, as well as data on mean age, gender, body weight, initial electrolyte intake and initial blood pressure of the trial populations. Blood pressure effects of changes in electrolyte intake were assessed by weighted metaregression analysis, overall and in strata of trial population characteristics. Analyses were repeated with adjustment for potential confounders. Sodium reduction (median: -77 mmol/24 h) was associated with a change of -2.54 mmHg (95% CI: -3.16, -1.92) in systolic blood pressure and -1.96 mmHg (-2.41, -1.51) in diastolic blood pressure. Corresponding values for increased potassium intake (median: 44 mmol/24 h) were -2.42 mmHg (-3.75, -1.08) and -1.57 mmHg (-2.65, -0.50). Blood pressure response was larger in hypertensives than normotensives, both for sodium (systolic: -5.24 vs -1.26 mmHg, P < 0.001; diastolic: -3.69 vs -1.14 mmHg, P < 0.001) and potassium (systolic: -3.51 vs -0.97 mmHg, P=0.089; diastolic: -2.51 vs -0.34 mmHg, P=0.074). In conclusion, reduced intake of sodium and increased intake of potassium could make an important contribution to the prevention of hypertension, especially in populations with elevated blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials.

              In observational studies, increased vitamin C intake, vitamin C supplementation, and higher blood concentrations of vitamin C are associated with lower blood pressure (BP). However, evidence for blood pressure-lowering effects of vitamin C in clinical trials is inconsistent. The objective was to conduct a systematic review and meta-analysis of clinical trials that examined the effects of vitamin C supplementation on BP. We searched Medline, EMBASE, and Central databases from 1966 to 2011. Prespecified inclusion criteria were as follows: 1) use of a randomized controlled trial design; 2) trial reported effects on systolic BP (SBP) or diastolic BP (DBP) or both; 3) trial used oral vitamin C and concurrent control groups; and 4) trial had a minimum duration of 2 wk. BP effects were pooled by random-effects models, with trials weighted by inverse variance. Twenty-nine trials met eligibility criteria for the primary analysis. The median dose was 500 mg/d, the median duration was 8 wk, and trial sizes ranged from 10 to 120 participants. The pooled changes in SBP and DBP were -3.84 mm Hg (95% CI: -5.29, -2.38 mm Hg; P < 0.01) and -1.48 mm Hg (95% CI: -2.86, -0.10 mm Hg; P = 0.04), respectively. In trials in hypertensive participants, corresponding reductions in SBP and DBP were -4.85 mm Hg (P < 0.01) and -1.67 mm Hg (P = 0.17). After the inclusion of 9 trials with imputed BP effects, BP effects were attenuated but remained significant. In short-term trials, vitamin C supplementation reduced SBP and DBP. Long-term trials on the effects of vitamin C supplementation on BP and clinical events are needed.
                Bookmark

                Author and article information

                Journal
                Ind Health
                Ind Health
                INDHEALTH
                Industrial Health
                National Institute of Occupational Safety and Health, Japan
                0019-8366
                1880-8026
                16 April 2016
                May 2016
                : 54
                : 3
                : 215-223
                Affiliations
                [1 ]School of Public Health, North China University of Science and Technology, Tangshan, China
                [2 ]Hebei Coal Mine Health and Safety Laboratory, Tangshan, China
                [3 ]Tangshan Iron and Steel Group Corporation Hospital, Tangshan, China
                [4 ]Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
                Author notes
                [*]*To whom correspondence should be addressed. E-mail: yongmeitang@ 123456sina.com
                Article
                2014-0225
                10.2486/indhealth.2014-0225
                4939859
                27087421
                4fba1307-35bb-4d46-a58d-09e3d9cc9b99
                ©2016 National Institute of Occupational Safety and Health

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 31 October 2014
                : 09 November 2015
                Categories
                Original Article

                heat-exposed workers,sweat micronutrient losses,blood pressure,vitamins,minerals

                Comments

                Comment on this article