8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Declines in physical performance and cognition are commonly observed in older adults. The geroscience paradigm posits that a set of processes and pathways shared among age-associated conditions may also serve as a molecular explanation for the complex pathophysiology of physical frailty, sarcopenia, and cognitive decline. Mitochondrial dysfunction, inflammation, metabolic alterations, declines in cellular stemness, and altered intracellular signaling have been observed in muscle aging. Neurological factors have also been included among the determinants of sarcopenia. Neuromuscular junctions (NMJs) are synapses bridging nervous and skeletal muscle systems with a relevant role in age-related musculoskeletal derangement. Patterns of circulating metabolic and neurotrophic factors have been associated with physical frailty and sarcopenia. These factors are mostly related to disarrangements in protein-to-energy conversion as well as reduced calorie and protein intake to sustain muscle mass. A link between sarcopenia and cognitive decline in older adults has also been described with a possible role for muscle-derived mediators (i.e., myokines) in mediating muscle–brain crosstalk. Herein, we discuss the main molecular mechanisms and factors involved in the muscle–brain axis and their possible implication in cognitive decline in older adults. An overview of current behavioral strategies that allegedly act on the muscle–brain axis is also provided.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: not found
          • Article: not found

          Frailty in Older Adults: Evidence for a Phenotype

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sarcopenia

            Sarcopenia is a progressive and generalised skeletal muscle disorder involving the accelerated loss of muscle mass and function that is associated with increased adverse outcomes including falls, functional decline, frailty, and mortality. It occurs commonly as an age-related process in older people, influenced not only by contemporaneous risk factors, but also by genetic and lifestyle factors operating across the life course. It can also occur in mid-life in association with a range of conditions. Sarcopenia has become the focus of intense research aiming to translate current knowledge about its pathophysiology into improved diagnosis and treatment, with particular interest in the development of biomarkers, nutritional interventions, and drugs to augment the beneficial effects of resistance exercise. Designing effective preventive strategies that people can apply during their lifetime is of primary concern. Diagnosis, treatment, and prevention of sarcopenia is likely to become part of routine clinical practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Muscles, exercise and obesity: skeletal muscle as a secretory organ.

              During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                April 2023
                April 12 2023
                : 15
                : 8
                : 1853
                Article
                10.3390/nu15081853
                37111070
                4fb565af-fddc-4d87-af3a-af6a5e4eba17
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article