10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cross-species studies of orbitofrontal cortex and value-based decision-making

      Nature Neuroscience
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent work has emphasized the role that orbitofrontal cortex (OFC) has in value-based decision-making. However, it is also clear that a number of discrepancies have arisen when comparing the findings from animal models to those from humans. Here, we examine several possibilities that might explain these discrepancies, including anatomical difference between species, the behavioral tasks used to probe decision-making and the methodologies used to assess neural function. Understanding how these differences affect the interpretation of experimental results will help us to better integrate future results from animal models. This will enable us to fully realize the benefits of using multiple approaches to understand OFC function.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Neurophysiological investigation of the basis of the fMRI signal.

          Functional magnetic resonance imaging (fMRI) is widely used to study the operational organization of the human brain, but the exact relationship between the measured fMRI signal and the underlying neural activity is unclear. Here we present simultaneous intracortical recordings of neural signals and fMRI responses. We compared local field potentials (LFPs), single- and multi-unit spiking activity with highly spatio-temporally resolved blood-oxygen-level-dependent (BOLD) fMRI responses from the visual cortex of monkeys. The largest magnitude changes were observed in LFPs, which at recording sites characterized by transient responses were the only signal that significantly correlated with the haemodynamic response. Linear systems analysis on a trial-by-trial basis showed that the impulse response of the neurovascular system is both animal- and site-specific, and that LFPs yield a better estimate of BOLD responses than the multi-unit responses. These findings suggest that the BOLD contrast mechanism reflects the input and intracortical processing of a given area rather than its spiking output.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural basis of decision making.

            The study of decision making spans such varied fields as neuroscience, psychology, economics, statistics, political science, and computer science. Despite this diversity of applications, most decisions share common elements including deliberation and commitment. Here we evaluate recent progress in understanding how these basic elements of decision formation are implemented in the brain. We focus on simple decisions that can be studied in the laboratory but emphasize general principles likely to extend to other settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurons in the orbitofrontal cortex encode economic value.

              Economic choice is the behaviour observed when individuals select one among many available options. There is no intrinsically 'correct' answer: economic choice depends on subjective preferences. This behaviour is traditionally the object of economic analysis and is also of primary interest in psychology. However, the underlying mental processes and neuronal mechanisms are not well understood. Theories of human and animal choice have a cornerstone in the concept of 'value'. Consider, for example, a monkey offered one raisin versus one piece of apple: behavioural evidence suggests that the animal chooses by assigning values to the two options. But where and how values are represented in the brain is unclear. Here we show that, during economic choice, neurons in the orbitofrontal cortex (OFC) encode the value of offered and chosen goods. Notably, OFC neurons encode value independently of visuospatial factors and motor responses. If a monkey chooses between A and B, neurons in the OFC encode the value of the two goods independently of whether A is presented on the right and B on the left, or vice versa. This trait distinguishes the OFC from other brain areas in which value modulates activity related to sensory or motor processes. Our results have broad implications for possible psychological models, suggesting that economic choice is essentially choice between goods rather than choice between actions. In this framework, neurons in the OFC seem to be a good candidate network for value assignment underlying economic choice.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                January 2012
                November 20 2011
                January 2012
                : 15
                : 1
                : 13-19
                Article
                10.1038/nn.2956
                3549638
                22101646
                4fa646bb-e5ee-4012-a7b4-9b01ed946026
                © 2012

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article