There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Hepatitis B virus (HBV) infection remains a global public health problem with changing epidemiology due to several factors including vaccination policies and migration. This Clinical Practice Guideline presents updated recommendations for the optimal management of HBV infection. Chronic HBV infection can be classified into five phases: (I) HBeAg-positive chronic infection, (II) HBeAg-positive chronic hepatitis, (III) HBeAg-negative chronic infection, (IV) HBeAg-negative chronic hepatitis and (V) HBsAg-negative phase. All patients with chronic HBV infection are at increased risk of progression to cirrhosis and hepatocellular carcinoma (HCC), depending on host and viral factors. The main goal of therapy is to improve survival and quality of life by preventing disease progression, and consequently HCC development. The induction of long-term suppression of HBV replication represents the main endpoint of current treatment strategies, while HBsAg loss is an optimal endpoint. The typical indication for treatment requires HBV DNA >2,000IU/ml, elevated ALT and/or at least moderate histological lesions, while all cirrhotic patients with detectable HBV DNA should be treated. Additional indications include the prevention of mother to child transmission in pregnant women with high viremia and prevention of HBV reactivation in patients requiring immunosuppression or chemotherapy. The long-term administration of a potent nucleos(t)ide analogue with high barrier to resistance, i.e., entecavir, tenofovir disoproxil or tenofovir alafenamide, represents the treatment of choice. Pegylated interferon-alfa treatment can also be considered in mild to moderate chronic hepatitis B patients. Combination therapies are not generally recommended. All treated and untreated patients should be monitored for treatment response and adherence, and the risk of progression and development of complications. HCC remains the major concern for treated chronic hepatitis B patients. Several subgroups of patients with HBV infection require specific focus. Future treatment strategies to achieve 'cure' of disease and new biomarkers are discussed.
Liver biopsy remains the gold standard in the assessment of severity of liver disease. Noninvasive tests have gained popularity to predict histology in view of the associated risks of biopsy. However, many models include tests not readily available, and there are limited data from patients with HIV/hepatitis C virus (HCV) coinfection. We aimed to develop a model using routine tests to predict liver fibrosis in patients with HIV/HCV coinfection. A retrospective analysis of liver histology was performed in 832 patients. Liver fibrosis was assessed via Ishak score; patients were categorized as 0-1, 2-3, or 4-6 and were randomly assigned to training (n = 555) or validation (n = 277) sets. Multivariate logistic regression analysis revealed that platelet count (PLT), age, AST, and INR were significantly associated with fibrosis. Additional analysis revealed PLT, age, AST, and ALT as an alternative model. Based on this, a simple index (FIB-4) was developed: age ([yr] x AST [U/L]) / ((PLT [10(9)/L]) x (ALT [U/L])(1/2)). The AUROC of the index was 0.765 for differentiation between Ishak stage 0-3 and 4-6. At a cutoff of 3.25 had a positive predictive value of 65% and a specificity of 97%. Using these cutoffs, 87% of the 198 patients with FIB-4 values outside 1.45-3.25 would be correctly classified, and liver biopsy could be avoided in 71% of the validation group. In conclusion, noninvasive tests can accurately predict hepatic fibrosis and may reduce the need for liver biopsy in the majority of HIV/HCV-coinfected patients.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.