Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Membrane protein insertion through a mitochondrial β-barrel gate

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Structure validation by Calpha geometry: phi,psi and Cbeta deviation.

          Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage). Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form.

            A discontinuous electrophoretic system for the isolation of membrane proteins from acrylamide gels has been developed using equipment for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Coomassie dyes were introduced to induce a charge shift on the proteins and aminocaproic acid served to improve solubilization of membrane proteins. Solubilized mitochondria or extracts of heart muscle tissue, lymphoblasts, yeast, and bacteria were applied to the gels. From cells containing mitochondria, all the multiprotein complexes of the oxidative phosphorylation system were separated within one gel. The complexes were resolved into the individual polypeptides by second-dimension Tricine-SDS-PAGE or extracted without SDS for functional studies. The recovery of all respiratory chain complexes was almost quantitative. The percentage recovery of functional activity depended on the respective protein complex studied and was zero for some complexes, but almost quantitative for others. The system is especially useful for small scale purposes, e.g., separation of radioactively labeled membrane proteins, N-terminal protein sequencing, preparation of proteins for immunization, and diagnostic studies of inborn neuromuscular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast and accurate automatic structure prediction with HHpred.

              Automated protein structure prediction is becoming a mainstream tool for biological research. This has been fueled by steady improvements of publicly available automated servers over the last decade, in particular their ability to build good homology models for an increasing number of targets by reliably detecting and aligning more and more remotely homologous templates. Here, we describe the three fully automated versions of the HHpred server that participated in the community-wide blind protein structure prediction competition CASP8. What makes HHpred unique is the combination of usability, short response times (typically under 15 min) and a model accuracy that is competitive with those of the best servers in CASP8. Copyright 2009 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 18 2018
                January 18 2018
                : 359
                : 6373
                : eaah6834
                Article
                10.1126/science.aah6834
                5959003
                29348211
                4f98b662-cf82-4c2a-a53e-a7532a15541f
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,614

                Cited by58

                Most referenced authors1,295