87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships

      research-article
      1 , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes ( NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including α-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi.

          Results

          Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity.

          Conclusions

          This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the α-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ProtTest: selection of best-fit models of protein evolution.

            Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concerted and birth-and-death evolution of multigene families.

              Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2010
                26 January 2010
                : 10
                : 26
                Affiliations
                [1 ]Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
                Article
                1471-2148-10-26
                10.1186/1471-2148-10-26
                2823734
                20100353
                4f929318-a7e9-44fe-adf2-257e4dc3d828
                Copyright ©2010 Bushley and Turgeon; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2009
                : 26 January 2010
                Categories
                Research article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content259

                Cited by86

                Most referenced authors2,050