2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Injectable “nano-micron” combined gene-hydrogel microspheres for local treatment of osteoarthritis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sustained and controllable local gene therapy is a potential method for treating osteoarthritis (OA) through the delivery of therapeutic microRNAs (miRNAs) to targeted cells. However, direct injection of crude miRNAs for local gene therapy is limited due to its inadequate transfection efficiency, easy inactivation, and short half-life. Here, a multifunctional gene vector, arginine, histidine, and phenylalanine-modified generation 5 polyamidoamine (named G5-AHP), was employed to form G5-AHP/miR-140 nanoparticles by forming a complex with microRNA-140 (miR-140). Then, the nanoparticles were entrapped in hydrogel microspheres (MSs) to construct a “nano-micron” combined gene hydrogel to alleviate the degradation of articular cartilage. Monodisperse gelatin methacryloyl hydrogel MSs were produced under ultraviolet light using one-step innovative microfluidic technology. Evenly dispersed MSs showed better injectability in sustainable and matrix metalloproteinases (MMPs)-responsive degradation methods for local gene delivery. The G5-AHP/miR-140 nanoparticles released from the MSs exhibited high gene transfection efficacy and long-term bioactivity, facilitated endocytosis, and thus maintained the metabolic balance of cartilage matrix by promoting the expression of type II collagen and inhibiting the expression of a disintegrin and metalloproteinase with thrombospondin motifs-5 and MMP13 in chondrocytes. After injection of the “nano-micron” combined gene hydrogel into the articular cavity of the OA model, the gene hydrogel increased G5-AHP/miR-140 nanoparticle retention, prevented articular cartilage degeneration, and reduced osteophyte formation in a surgically induced mouse model of OA. The present study provides a novel cell-free approach to alleviate the progression of OA that shows potential for locally injected gene delivery systems.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA therapeutics: towards a new era for the management of cancer and other diseases

          MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoarthritis cartilage histopathology: grading and staging.

            Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.

              Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing.
                Bookmark

                Author and article information

                Contributors
                Journal
                NPG Asia Materials
                NPG Asia Mater
                Springer Science and Business Media LLC
                1884-4049
                1884-4057
                December 2022
                January 07 2022
                December 2022
                : 14
                : 1
                Article
                10.1038/s41427-021-00351-7
                4f7f7a55-a57e-4881-bf81-252059a19a9e
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article