40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Increased activity of the innate immune system has been implicated in the pathogenesis of the dyslipidemia and insulin resistance associated with obesity and type 2 diabetes. In this study, we addressed the potential role of Kupffer cells (liver-specific macrophages, KCs) in these metabolic abnormalities.

          RESEARCH DESIGN AND METHODS

          Rats were depleted of KCs by administration of gadolinium chloride, after which all animals were exposed to a 2-week high-fat or high-sucrose diet. Subsequently, the effects of these interventions on the development of hepatic insulin resistance and steatosis were assessed. In further studies, the effects of M1-polarized KCs on hepatocyte lipid metabolism and insulin sensitivity were addressed.

          RESULTS

          As expected, a high-fat or high-sucrose diet induced steatosis and hepatic insulin resistance. However, these metabolic abnormalities were prevented when liver was depleted of KCs. In vitro, KCs recapitulated the in vivo effects of diet by increasing hepatocyte triglyceride accumulation and fatty acid esterification, and decreasing fatty acid oxidation and insulin responsiveness. To address the mechanisms(s) of KC action, we inhibited a panel of cytokines using neutralizing antibodies. Only neutralizing antibodies against tumor necrosis factor-α (TNFα) attenuated KC-induced alterations in hepatocyte fatty acid oxidation, triglyceride accumulation, and insulin responsiveness. Importantly, KC TNFα levels were increased by diet in vivo and in isolated M1-polarized KCs in vitro.

          CONCLUSIONS

          These data demonstrate a role for liver macrophages in diet-induced alterations in hepatic lipid metabolism and insulin sensitivity, and suggest a role for these cells in the etiology of the metabolic abnormalities of obesity/type 2 diabetes.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.

            Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IKK-beta links inflammation to obesity-induced insulin resistance.

              Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                February 2010
                23 November 2009
                : 59
                : 2
                : 347-357
                Affiliations
                [1] 1Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania;
                [2] 2Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania.
                Author notes
                Corresponding author: Robert M. O'Doherty, rmo1@ 123456pitt.edu .

                W.H. and A.M. contributed equally to this work.

                Article
                0016
                10.2337/db09-0016
                2809951
                19934001
                4f3063d2-17a2-43a3-9f3c-5127cffd0164
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 8 January 2009
                : 11 November 2009
                Funding
                Funded by: National Institutes of Health
                Award ID: RO1-DK-058855
                Award ID: RO1-DK-072162
                Award ID: RO1-DK-065149
                Categories
                Original Article
                Metabolism

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article