13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a novel sesquiterpene biosynthetic machinery involved in astellolide biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Esterified drimane-type sesquiterpene lactones such as astellolides display various biological activities and are widely produced by plants and fungi. Given their low homology to known sesquiterpene cyclases, the genes responsible for their biosynthesis have not been uncovered yet. Here, we identified the astellolide gene cluster from Aspergillus oryzae and discovered a novel sesquiterpene biosynthetic machinery consisting of AstC, AstI, and AstK. All these enzymes are annotated as haloacid dehalogenase-like hydrolases, whereas AstC also contains a DxDTT motif conserved in class II diterpene cyclases. Based on enzyme reaction analyses, we found that AstC catalysed the protonation-initiated cyclisation of farnesyl pyrophosphate into drimanyl pyrophosphate. This was successively dephosphorylated by AstI and AstK to produce drim-8-ene-11-ol. Moreover, we also identified and characterised a unique non-ribosomal peptide synthetase, AstA, responsible for esterifying aryl acids to drimane-type sesquiterpene lactones. In this study, we highlight a new biosynthetic route for producing sesquiterpene and its esterified derivative. Our findings shed light on the identification of novel sesquiterpenes via genome mining.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Fungal secondary metabolism - from biochemistry to genomics.

          Much of natural product chemistry concerns a group of compounds known as secondary metabolites. These low-molecular-weight metabolites often have potent physiological activities. Digitalis, morphine and quinine are plant secondary metabolites, whereas penicillin, cephalosporin, ergotrate and the statins are equally well known fungal secondary metabolites. Although chemically diverse, all secondary metabolites are produced by a few common biosynthetic pathways, often in conjunction with morphological development. Recent advances in molecular biology, bioinformatics and comparative genomics have revealed that the genes encoding specific fungal secondary metabolites are clustered and often located near telomeres. In this review, we address some important questions, including which evolutionary pressures led to gene clustering, why closely related species produce different profiles of secondary metabolites, and whether fungal genomics will accelerate the discovery of new pharmacologically active natural products.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMURF: Genomic mapping of fungal secondary metabolite clusters.

            Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized clusters from six fungal species showed that SMURF accurately recovered all clusters and detected additional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs. Further genetics studies are needed to experimentally confirm these clusters. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Terpene synthases are widely distributed in bacteria.

              Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 September 2016
                2016
                : 6
                : 32865
                Affiliations
                [1 ]Noda Institute for Scientific Research , 399 Noda, Noda, Chiba 278-0037, Japan
                [2 ]Chemical Biology Research Group, RIKEN CSRS, 2-1 Hirosawa, Wako , Saitama 351-0198, Japan
                Author notes
                Article
                srep32865
                10.1038/srep32865
                5024094
                27628599
                4ec9e40c-d5b6-42bd-b489-b249bac779de
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 April 2016
                : 10 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article