6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again?

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Challenges have been recognized in healthcare of patients with Alzheimer’s disease (AD) in the COVID-19 pandemic, given a high infection and mortality rate of COVID-19 in these patients. This situation urges the identification of underlying risks and preferably biomarkers for evidence-based, more effective healthcare. Towards this goal, current literature review and network analysis synthesize available information on the AD-related gene APOE into four lines of mechanistic evidence. At a cellular level, the risk isoform APOE4 confers high infectivity by the underlying coronavirus SARS-CoV-2; at a genetic level, APOE4 is associated with severe COVID-19; at a pathway level, networking connects APOE with COVID-19 risk factors such as ACE2, TMPRSS2, NRP1, and LZTFL1; at a behavioral level, APOE4-associated dementia may increase the exposure to coronavirus infection which causes COVID-19. Thus, APOE4 could exert multiple actions for high infection and mortality rates of the patients, or generally, with COVID-19.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity

            Another host factor for SARS-CoV-2 Virus-host interactions determine cellular entry and spreading in tissues. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the earlier SARS-CoV use angiotensin-converting enzyme 2 (ACE2) as a receptor; however, their tissue tropism differs, raising the possibility that additional host factors are involved. The spike protein of SARS-CoV-2 contains a cleavage site for the protease furin that is absent from SARS-CoV (see the Perspective by Kielian). Cantuti-Castelvetri et al. now show that neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates SARS-CoV-2 infectivity. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial and epithelial cells. Daly et al. found that the furin-cleaved S1 fragment of the spike protein binds directly to cell surface NRP1 and blocking this interaction with a small-molecule inhibitor or monoclonal antibodies reduced viral infection in cell culture. Understanding the role of NRP1 in SARS-CoV-2 infection may suggest potential targets for future antiviral therapeutics. Science, this issue p. 856, p. 861; see also p. 765
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomewide Association Study of Severe Covid-19 with Respiratory Failure

              Abstract Background There is considerable variation in disease behavior among patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19). Genomewide association analysis may allow for the identification of potential genetic factors involved in the development of Covid-19. Methods We conducted a genomewide association study involving 1980 patients with Covid-19 and severe disease (defined as respiratory failure) at seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe. After quality control and the exclusion of population outliers, 835 patients and 1255 control participants from Italy and 775 patients and 950 control participants from Spain were included in the final analysis. In total, we analyzed 8,582,968 single-nucleotide polymorphisms and conducted a meta-analysis of the two case–control panels. Results We detected cross-replicating associations with rs11385942 at locus 3p21.31 and with rs657152 at locus 9q34.2, which were significant at the genomewide level (P<5×10−8) in the meta-analysis of the two case–control panels (odds ratio, 1.77; 95% confidence interval [CI], 1.48 to 2.11; P=1.15×10−10; and odds ratio, 1.32; 95% CI, 1.20 to 1.47; P=4.95×10−8, respectively). At locus 3p21.31, the association signal spanned the genes SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1. The association signal at locus 9q34.2 coincided with the ABO blood group locus; in this cohort, a blood-group–specific analysis showed a higher risk in blood group A than in other blood groups (odds ratio, 1.45; 95% CI, 1.20 to 1.75; P=1.48×10−4) and a protective effect in blood group O as compared with other blood groups (odds ratio, 0.65; 95% CI, 0.53 to 0.79; P=1.06×10−5). Conclusions We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.)
                Bookmark

                Author and article information

                Contributors
                zhicheng_lin@hms.harvard.edu
                Journal
                Alzheimers Res Ther
                Alzheimers Res Ther
                Alzheimer's Research & Therapy
                BioMed Central (London )
                1758-9193
                12 June 2021
                12 June 2021
                2021
                : 13
                : 111
                Affiliations
                [1 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Neurology, Union Hospital, Tongji Medical College, , Huazhong University of Science and Technology, ; Wuhan, 430022 Hubei China
                [2 ]GRID grid.272362.0, ISNI 0000 0001 0806 6926, Nevada Institute of Personalized Medicine and School of Life Sciences, , University of Nevada Las Vegas, ; Las Vegas, NV 89154 USA
                [3 ]GRID grid.263488.3, ISNI 0000 0001 0472 9649, Department of Neurology, , Shenzhen University General Hospital, ; Shenzhen, 518000 Guangdong China
                [4 ]GRID grid.38142.3c, ISNI 000000041936754X, Laboratory for Psychiatric Neurogenomics, , McLean Hospital, Harvard Medical School, ; Belmont, MA 02478 USA
                Author information
                http://orcid.org/0000-0003-1372-422X
                Article
                858
                10.1186/s13195-021-00858-9
                8197596
                34118974
                4e9c6a26-3994-48a1-b227-5efc60457a42
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 5 April 2021
                : 3 June 2021
                Categories
                Commentary
                Custom metadata
                © The Author(s) 2021

                Neurology
                apoe4,biomarker,coronavirus,comorbidity,peripheral mechanisms,covid-19
                Neurology
                apoe4, biomarker, coronavirus, comorbidity, peripheral mechanisms, covid-19

                Comments

                Comment on this article