0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The antiatherogenic effect of bixin in hypercholesterolemic rabbits is associated to the improvement of lipid profile and to its antioxidant and anti-inflammatory effects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Foam cells in atherosclerosis.

          Atherosclerosis is a chronic disease characterized by the deposition of excessive cholesterol in the arterial intima. Macrophage foam cells play a critical role in the occurrence and development of atherosclerosis. The generation of these cells is associated with imbalance of cholesterol influx, esterification and efflux. CD36 and scavenger receptor class A (SR-A) are mainly responsible for uptake of lipoprotein-derived cholesterol by macrophages. Acyl coenzyme A:cholesterol acyltransferase-1 (ACAT1) and neutral cholesteryl ester hydrolase (nCEH) regulate cholesterol esterification. ATP-binding cassette transporters A1(ABCA1), ABCG1 and scavenger receptor BI (SR-BI) play crucial roles in macrophage cholesterol export. When inflow and esterification of cholesterol increase and/or its outflow decrease, the macrophages are ultimately transformed into lipid-laden foam cells, the prototypical cells in the atherosclerotic plaque. The aim of this review is to describe what is known about the mechanisms of cholesterol uptake, esterification and release in macrophages. An increased understanding of the process of macrophage foam cell formation will help to develop novel therapeutic interventions for atherosclerosis. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidants and human diseases.

            Oxidative stress plays a pivotal role in the development of human diseases. Reactive oxygen species (ROS) that includes hydrogen peroxide, hyphochlorus acid, superoxide anion, singlet oxygen, lipid peroxides, hypochlorite and hydroxyl radical are involved in growth, differentiation, progression and death of the cell. They can react with membrane lipids, nucleic acids, proteins, enzymes and other small molecules. Low concentrations of ROS has an indispensable role in intracellular signalling and defence against pathogens, while, higher amounts of ROS play a role in number of human diseases, including arthritis, cancer, diabetes, atherosclerosis, ischemia, failures in immunity and endocrine functions. Antioxidants presumably act as safeguard against the accumulation of ROS and their elimination from the system. The aim of this review is to highlight advances in understanding of the ROS and also to summarize the detailed impact and involvement of antioxidants in selected human diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal.

              CD36 is an important scavenger receptor mediating uptake of oxidized low-density lipoproteins (oxLDLs) and plays a key role in foam cell formation and the pathogenesis of atherosclerosis. We report the first evidence that the transcription factor Nrf2 is expressed in vascular smooth muscle cells, and demonstrate that oxLDLs cause nuclear accumulation of Nrf2 in murine macrophages, resulting in the activation of genes encoding CD36 and the stress proteins A170, heme oxygenase-1 (HO-1), and peroxiredoxin I (Prx I). 4-Hydroxy-2-nonenal (HNE), derived from lipid peroxidation, was one of the most effective activators of Nrf2. Using Nrf2-deficient macrophages, we established that Nrf2 partially regulates CD36 expression in response to oxLDLs, HNE, or the electrophilic agent diethylmaleate. In murine aortic smooth muscle cells, expressing negligible levels of CD36, both moderately and highly oxidized LDL caused only limited Nrf2 translocation and negligible increases in A170, HO-1, and Prx I expression. However, treatment of smooth muscle cells with HNE significantly enhanced nuclear accumulation of Nrf2 and increased A170, HO-1, and Prx I protein levels. Because PPAR-gamma can be activated by oxLDLs and controls expression of CD36 in macrophages, our results implicate Nrf2 as a second important transcription factor involved in the induction of the scavenger receptor CD36 and antioxidant stress genes in atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Molecular and Cellular Biochemistry
                Mol Cell Biochem
                Springer Science and Business Media LLC
                0300-8177
                1573-4919
                May 2015
                February 22 2015
                May 2015
                : 403
                : 1-2
                : 243-253
                Article
                10.1007/s11010-015-2354-x
                25702177
                4e95198b-0dfc-49ef-867a-2b415b3d5597
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article