35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local tumour hyperthermia as immunotherapy for metastatic cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing the history of hyperthermia therapy for cancer and introducing methods for inducing local hyperthermia, this review describes different mechanisms by which heating tumours can elicit anti-tumour immune responses, including tumour cell damage, tumour surface molecule changes, heat shock proteins, exosomes, direct effects on immune cells, and changes in the tumour vasculature. We then go over in vivo studies that provide promising results showing that local hyperthermia therapy indeed activates various systemic anti-tumour immune responses that slow growth of untreated tumours. Finally, future research questions that will help bring the use of local hyperthermia as systemic immunotherapy closer to clinical application are discussed.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy.

          Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperthermia in combined treatment of cancer.

            Hyperthermia, the procedure of raising the temperature of tumour-loaded tissue to 40-43 degrees C, is applied as an adjunctive therapy with various established cancer treatments such as radiotherapy and chemotherapy. The potential to control power distributions in vivo has been significantly improved lately by the development of planning systems and other modelling tools. This increased understanding has led to the design of multiantenna applicators (including their transforming networks) and implementation of systems for monitoring of E-fields (eg, electro-optical sensors) and temperature (particularly, on-line magnetic resonance tomography). Several phase III trials comparing radiotherapy alone or with hyperthermia have shown a beneficial effect of hyperthermia (with existing standard equipment) in terms of local control (eg, recurrent breast cancer and malignant melanoma) and survival (eg, head and neck lymph-node metastases, glioblastoma, cervical carcinoma). Therefore, further development of existing technology and elucidation of molecular mechanisms are justified. In recent molecular and biological investigations there have been novel applications such as gene therapy or immunotherapy (vaccination) with temperature acting as an enhancer, to trigger or to switch mechanisms on and off. However, for every particular temperature-dependent interaction exploited for clinical purposes, sophisticated control of temperature, spatially as well as temporally, in deep body regions will further improve the potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular and molecular basis of hyperthermia.

              In oncology, the term 'hyperthermia' refers to the treatment of malignant diseases by administering heat in various ways. Hyperthermia is usually applied as an adjunct to an already established treatment modality (especially radiotherapy and chemotherapy), where tumor temperatures in the range of 40-43 degrees C are aspired. In several clinical phase-III trials, an improvement of both local control and survival rates have been demonstrated by adding local/regional hyperthermia to radiotherapy in patients with locally advanced or recurrent superficial and pelvic tumors. In addition, interstitial hyperthermia, hyperthermic chemoperfusion, and whole-body hyperthermia (WBH) are under clinical investigation, and some positive comparative trials have already been completed. In parallel to clinical research, several aspects of heat action have been examined in numerous pre-clinical studies since the 1970s. However, an unequivocal identification of the mechanisms leading to favorable clinical results of hyperthermia have not yet been identified for various reasons. This manuscript deals with discussions concerning the direct cytotoxic effect of heat, heat-induced alterations of the tumor microenvironment, synergism of heat in conjunction with radiation and drugs, as well as, the presumed cellular effects of hyperthermia including the expression of heat-shock proteins (HSP), induction and regulation of apoptosis, signal transduction, and modulation of drug resistance by hyperthermia.
                Bookmark

                Author and article information

                Journal
                Int J Hyperthermia
                Int J Hyperthermia
                IHYT
                ihyt20
                International Journal of Hyperthermia
                Taylor & Francis
                0265-6736
                1464-5157
                1 December 2014
                28 November 2014
                : 30
                : 8
                : 531-539
                Affiliations
                [ a ]Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth HanoverNew Hampshire
                [ b ]Department of Genetics, Geisel School of Medicine at Dartmouth HanoverNew Hampshire, and
                [ c ]Norris Cotton Cancer Center Lebanon, New HampshireUSA
                Author notes
                Correspondence: Steven Fiering, 622 Rubin DHMC, Lebanon, NH 03756USA. Tel: 603-653-9966. Fax: 603-653-9952. E-mail: Fiering@ 123456Dartmouth.edu
                Article
                968640
                10.3109/02656736.2014.968640
                4558619
                25430985
                4e827ba7-a891-4a10-8bc6-11506d0b6c0d
                © 2014 The Author(s). Published by Taylor & Francis.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 26 June 2014
                : 9 September 2014
                : 18 September 2014
                Page count
                Figures: 1, Tables: 0, References: 88, Pages: 9
                Categories
                Biology

                Medicine
                biology,immunotherapy,local hyperthermia,tumor immunology,tumor immunotherapy
                Medicine
                biology, immunotherapy, local hyperthermia, tumor immunology, tumor immunotherapy

                Comments

                Comment on this article