36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing evidence confirms the crucial role bacteria and archaea play within the coral holobiont, that is, the coral host and its associated microbial community. The bacterial component constitutes a community of high diversity, which appears to change in structure in response to disease events. In this study, we highlight the limitation of 16S rRNA gene (16S rDNA) clone library sequencing as the sole method to comprehensively describe coral-associated communities. This limitation was addressed by combining a high-density 16S rRNA gene microarray with, clone library sequencing as a novel approach to study bacterial communities in healthy versus diseased corals. We determined an increase in diversity as well as a significant shift in community structure in Montastraea faveolata colonies displaying phenotypic signs of White Plague Disease type II (WPD-II). An accumulation of species that belong to families that include known coral pathogens (Alteromonadaceae, Vibrionaceae), bacteria previously isolated from diseased, stressed or injured marine invertebrates (for example, Rhodobacteraceae), and other species (for example, Campylobacteraceae) was observed. Some of these species were also present in healthy tissue samples, but the putative primary pathogen, Aurantimonas corallicida, was not detected in any sample by either method. Although an ecological succession of bacteria during disease progression after causation by a primary agent represents a possible explanation for our observations, we also discuss the possibility that a disease of yet to be determined etiology may have affected M. faveolata colonies and resulted in (or be a result of) an increase in opportunistic pathogens.

          Related collections

          Author and article information

          Journal
          ISME J
          The ISME journal
          Springer Science and Business Media LLC
          1751-7370
          1751-7362
          May 2009
          : 3
          : 5
          Affiliations
          [1 ] School of Natural Sciences, University of California, Merced, CA 95344, USA.
          Article
          ismej2008131
          10.1038/ismej.2008.131
          19129866
          4e6bb66f-3986-4385-976d-3c0dd1e9a02f

          Comments

          Comment on this article