16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system’s role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.

          Graphical Abstract

          Related collections

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          Multilineage potential of adult human mesenchymal stem cells.

          Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty

            Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoclast differentiation and activation.

              Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2287918Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/389291Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/2423204Role: Role: Role:
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                16 May 2024
                2024
                : 15
                : 1396122
                Affiliations
                [1] 1 The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital , Wenling, Zhejiang, China
                [2] 2 College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha, Hunan, China
                Author notes

                Edited by: Kyung-Hyun Park-Min, Hospital for Special Surgery, United States

                Reviewed by: Jehan J. El-Jawhari, Nottingham Trent University, United Kingdom

                Se Hwan Mun, Sookmyung Women’s University, Republic of Korea

                *Correspondence: Gang Liu, gangle.liu@ 123456gmail.c4om ; Siwang Hu, siwang_h@ 123456wmu.edu.cn
                Article
                10.3389/fimmu.2024.1396122
                11137183
                38817601
                4e56c20a-9680-402e-8c9d-93e36e1d9550
                Copyright © 2024 Li, Liu and Hu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 March 2024
                : 26 April 2024
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 222, Pages: 22, Words: 11223
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The research was supported by the grants from: Zhejiang Provincial Program for Medicine and Health (2022KY446, 2023KY1347), Social Development Science and Technology Foundation of Taizhou (21ywb118, 20ywb143), Social Development Science and Technology Foundation of Wenling (2020S0180083, 2021S00156, 2020S0180127) and Hunan Provincial Science and Technology Department (2019TP2004).
                Categories
                Immunology
                Review
                Custom metadata
                Inflammation

                Immunology
                osteoporosis,bone remodeling,interferon-gamma,osteoblast,osteoclast
                Immunology
                osteoporosis, bone remodeling, interferon-gamma, osteoblast, osteoclast

                Comments

                Comment on this article