0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

          A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenic cell death in cancer therapy.

            Depending on the initiating stimulus, cancer cell death can be immunogenic or nonimmunogenic. Immunogenic cell death (ICD) involves changes in the composition of the cell surface as well as the release of soluble mediators, occurring in a defined temporal sequence. Such signals operate on a series of receptors expressed by dendritic cells to stimulate the presentation of tumor antigens to T cells. We postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies. Hence, suboptimal regimens (failing to induce ICD), selective alterations in cancer cells (preventing the emission of immunogenic signals during ICD), or defects in immune effectors (abolishing the perception of ICD by the immune system) can all contribute to therapeutic failure. We surmise that ICD and its subversion by pathogens also play major roles in antiviral immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria as multifaceted regulators of cell death

              Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.
                Bookmark

                Author and article information

                Journal
                JBIC Journal of Biological Inorganic Chemistry
                J Biol Inorg Chem
                Springer Science and Business Media LLC
                1432-1327
                June 2023
                April 25 2023
                : 28
                : 4
                : 421-437
                Article
                10.1007/s00775-023-01997-0
                4e2ac5ea-cdff-4c42-a031-d6d73005a36b
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article