19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetically Diverse Highly Pathogenic Avian Influenza A(H5N1/H5N8) Viruses among Wild Waterfowl and Domestic Poultry, Japan, 2021

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic analyses of highly pathogenic avian influenza H5 subtype viruses isolated from the Izumi Plain, Japan, revealed cocirculation of 2 genetic groups of clade 2.3.4.4b viruses among migratory waterfowl. Our findings demonstrate that both continuous surveillance and timely information sharing of avian influenza viruses are valuable for rapid risk assessment.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

          M Hatta (2001)
          In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.

            Mammalian influenza viruses are descendants of avian strains that crossed the species barrier and underwent further adaptation. Since 1997 in southeast Asia, H5N1 highly pathogenic avian influenza viruses have been causing severe, even fatal disease in humans. Although no lineages of this subtype have been established until now, such repeated events may initiate a new pandemic. As a model of species transmission, we used the highly pathogenic avian influenza virus SC35 (H7N7), which is low-pathogenic for mice, and its lethal mouse-adapted descendant SC35M. Specific mutations in SC35M polymerase considerably increase its activity in mammalian cells, correlating with high virulence in mice. Some of these mutations are prevalent in chicken and mammalian isolates, especially in the highly pathogenic H5N1 viruses from southeast Asia. These activity-enhancing mutations of the viral polymerase complex demonstrate convergent evolution in nature and, therefore, may be a prerequisite for adaptation to a new host paving the way for new pandemic viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Airborne transmission of influenza A/H5N1 virus between ferrets.

              Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet ("airborne transmission") between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                July 2022
                : 28
                : 7
                : 1451-1455
                Affiliations
                [1]Kagoshima University, Kagoshima, Japan (K. Okuya, I. Kojima, M. Esaki, M. Ozawa);
                [2]National Agriculture and Food Research Organization, Tsukuba, Japan (J. Mine, K. Miyazawa, R. Tsunekuni, S. Sakuma, A. Kumagai, Y. Takadate, Y. Uchida);
                [3]Kagoshima Crane Conservation Committee, Izumi, Japan (K. Tokorozaki, T. Matsui, M. Ozawa);
                [4]Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan (Y. Kikutani)
                Author notes
                Address for correspondence: Makoto Ozawa, Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; email: mozawa@ 123456vet.kagoshima-u.ac.jp
                Article
                21-2586
                10.3201/eid2807.212586
                9239871
                35609620
                4e282738-daec-4ff7-af50-2d268abf8d4d
                Copyright @ 2022

                Emerging Infectious Diseases is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited.

                History
                Categories
                Dispatch
                Dispatch
                Genetically Diverse Highly Pathogenic Avian Influenza A(H5N1/H5N8) Viruses among Wild Waterfowl and Domestic Poultry, Japan, 2021

                Infectious disease & Microbiology
                influenza,viruses,zoonoses,respiratory infections,high pathogenicity avian influenza virus,h5 subtype,genetic characteristics,japan

                Comments

                Comment on this article