0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Therapeutic Efficacy of the Nanoscale Fluoropyrimidine Polymer CF10 in a Rat Colorectal Cancer Liver Metastasis Model

      , , , , ,
      Cancers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combination chemotherapy regimens that include fluoropyrimidine (FP) drugs, e.g., 5-fluorouracil (5-FU), are central to the treatment of colorectal cancer liver metastases (CRLMs), a major cause of cancer mortality. We tested a second-generation FP polymer, CF10, in a CC531/WAGRij syngeneic orthotopic rat model of liver metastasis to determine if CF10 improved response relative to 5-FU. CF10 displayed increased potency relative to 5-FU in CC531 rat colorectal cancer cells based on clonogenic assay results and caused increased apoptosis, as shown using a live/dead assay. The increased potency of CF10 to CC531 cells was associated with increased replication stress, as assessed by Western blot for biomarkers of ATR/Chk1 and ATM/Chk2 pathway activation. CF10 dosed to deliver equivalent FP content as an established dose of 5-FU in rats (50 mg/kg) did not cause weight loss in WAGRij rats even when combined with ethynyl uracil (EU), an inhibitor of dihydropyrimidine dehydrogenase, the enzyme primarily responsible for 5-FU degradation in the liver. In contrast, 5-FU caused significant weight loss that was exacerbated in combination with EU. Importantly, CF10 was significantly more effective than 5-FU at inhibiting tumor progression (~90% reduction) in the CC531/WAG/Rij CRLM model. Our results reveal strong potential for CF10 to be used for CRLM treatment.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global colorectal cancer burden in 2020 and projections to 2040

          • There are estimated 1.93 million new CRC cases diagnosed, and 0.94 million CRC caused deaths in 2020 worldwide. • The global new CRC cases is predicted to reach 3.2 million in 2040. • China and the United States have the highest estimated number of new CRC cases in the next 20 years. • The number of new CRC cases is increased from 0.56 million (2020) to 0.91 million (2040) in China. • The number of new CRC cases is increased from 0.16 million (2020) to 0.21 million (2040) in the United States. As the third most common malignancy and the second most deadly cancer, colorectal cancer (CRC) induces estimated 1.9 million incidence cases and 0.9 million deaths worldwide in 2020. The incidence of CRC is higher in highly developed countries, and it is increasing in middle- and low-income countries due to westernization. Moreover, a rising incidence of early-onset CRC is also emerging. The large number of CRC cases poses a growing global public health challenge. Raising awareness of CRC is important to promote healthy lifestyle choices, novel strategies for CRC management, and implementation of global screening programs, which are critical to reducing CRC morbidity and mortality in the future. CRC is a heterogeneous disease, and its subtype affiliation influences prognosis and therapeutic response. An accurate CRC subtype classification system is of great significance for basic research and clinical outcome. Here, we present the global epidemiology of CRC in 2020 and projections for 2040, review the major CRC subtypes to better understand CRC molecular basis, and summarize current risk factors, prevention, and screening strategies for CRC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The essential kinase ATR: ensuring faithful duplication of a challenging genome

            Replication stress is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR), which senses and resolves threats to DNA integrity. ATR activation is complex and involves a core set of components that recruit ATR to stressed replication forks, stimulate its kinase activity and amplify downstream signalling to maintain the stability of replication forks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Standing the test of time: targeting thymidylate biosynthesis in cancer therapy.

              Over the past 60 years, chemotherapeutic agents that target thymidylate biosynthesis and the enzyme thymidylate synthase (TS) have remained among the most-successful drugs used in the treatment of cancer. Fluoropyrimidines, such as 5-fluorouracil and capecitabine, and antifolates, such as methotrexate and pemetrexed, induce a state of thymidylate deficiency and imbalances in the nucleotide pool that impair DNA replication and repair. TS-targeted agents are used to treat numerous solid and haematological malignancies, either alone or as foundational therapeutics in combination treatment regimens. We overview the pivotal discoveries that led to the rational development of thymidylate biosynthesis as a chemotherapeutic target, and highlight the crucial contribution of these advances to driving and accelerating drug development in the earliest era of cancer chemotherapy. The function of TS as well as the mechanisms and consequences of inhibition of this enzyme by structurally diverse classes of drugs with distinct mechanisms of action are also discussed. In addition, breakthroughs relating to TS-targeted therapies that transformed the clinical landscape in some of the most-difficult-to-treat cancers, such as pancreatic, colorectal and non-small-cell lung cancer, are highlighted. Finally, new therapeutic agents and novel mechanism-based strategies that promise to further exploit the vulnerabilities and target resistance mechanisms within the thymidylate biosynthesis pathway are reviewed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                April 2024
                March 30 2024
                : 16
                : 7
                : 1360
                Article
                10.3390/cancers16071360
                11011147
                38611037
                4e11fa6d-160a-4159-9218-22cd94897436
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article