48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pharmaceuticals in the environment have received increased attention over the past decade, as they are ubiquitous in rivers and waterways. Concentrations are in sub-ng to low μg/L, well below acute toxic levels, but there are uncertainties regarding the effects of chronic exposures and there is a need to prioritise which pharmaceuticals may be of concern. The read-across hypothesis stipulates that a drug will have an effect in non-target organisms only if the molecular targets such as receptors and enzymes have been conserved, resulting in a (specific) pharmacological effect only if plasma concentrations are similar to human therapeutic concentrations. If this holds true for different classes of pharmaceuticals, it should be possible to predict the potential environmental impact from information obtained during the drug development process. This paper critically reviews the evidence for read-across, and finds that few studies include plasma concentrations and mode of action based effects. Thus, despite a large number of apparently relevant papers and a general acceptance of the hypothesis, there is an absence of documented evidence. There is a need for large-scale studies to generate robust data for testing the read-across hypothesis and developing predictive models, the only feasible approach to protecting the environment.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment.

          Ecological risk assessors face increasing demands to assess more chemicals, with greater speed and accuracy, and to do so using fewer resources and experimental animals. New approaches in biological and computational sciences may be able to generate mechanistic information that could help in meeting these challenges. However, to use mechanistic data to support chemical assessments, there is a need for effective translation of this information into endpoints meaningful to ecological risk-effects on survival, development, and reproduction in individual organisms and, by extension, impacts on populations. Here we discuss a framework designed for this purpose, the adverse outcome pathway (AOP). An AOP is a conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome at a biological level of organization relevant to risk assessment. The practical utility of AOPs for ecological risk assessment of chemicals is illustrated using five case examples. The examples demonstrate how the AOP concept can focus toxicity testing in terms of species and endpoint selection, enhance across-chemical extrapolation, and support prediction of mixture effects. The examples also show how AOPs facilitate use of molecular or biochemical endpoints (sometimes referred to as biomarkers) for forecasting chemical impacts on individuals and populations. In the concluding sections of the paper, we discuss how AOPs can help to guide research that supports chemical risk assessments and advocate for the incorporation of this approach into a broader systems biology framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diclofenac residues as the cause of vulture population decline in Pakistan.

            The Oriental white-backed vulture (OWBV; Gyps bengalensis) was once one of the most common raptors in the Indian subcontinent. A population decline of >95%, starting in the 1990s, was first noted at Keoladeo National Park, India. Since then, catastrophic declines, also involving Gyps indicus and Gyps tenuirostris, have continued to be reported across the subcontinent. Consequently these vultures are now listed as critically endangered by BirdLife International. In 2000, the Peregrine Fund initiated its Asian Vulture Crisis Project with the Ornithological Society of Pakistan, establishing study sites at 16 OWBV colonies in the Kasur, Khanewal and Muzaffargarh-Layyah Districts of Pakistan to measure mortality at over 2,400 active nest sites. Between 2000 and 2003, high annual adult and subadult mortality (5-86%) and resulting population declines (34-95%) (ref. 5 and M.G., manuscript in preparation) were associated with renal failure and visceral gout. Here, we provide results that directly correlate residues of the anti-inflammatory drug diclofenac with renal failure. Diclofenac residues and renal disease were reproduced experimentally in OWBVs by direct oral exposure and through feeding vultures diclofenac-treated livestock. We propose that residues of veterinary diclofenac are responsible for the OWBV decline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment.

              Pharmaceuticals are biologically active and persistent substances which have been recognized as a continuing threat to environmental stability. Chronic ecotoxicity data as well as information on the current distribution levels in different environmental compartments continue to be sparse and are focused on those therapeutic classes that are more frequently prescribed and consumed. Nevertheless, they indicate the negative impact that these chemical contaminants may have on living organisms, ecosystems and ultimately, public health. This article reviews the different contamination sources as well as fate and both acute and chronic effects on non-target organisms. An extensive review of existing data in the form of tables, encompassing many therapeutic classes is presented. (c) 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                05 September 2013
                15 October 2013
                : 47
                : 20
                : 11384-11395
                Affiliations
                []Biosciences, School of Health Sciences and Social Care, Brunel University , Uxbridge, Middlesex, UB8 3PH, United Kingdom
                []Institute for the Environment, Brunel University , Uxbridge, Middlesex, UB8 3PH, United Kingdom
                [§ ]AstraZeneca, Brixham Environmental Laboratory , Freshwater Quarry, Brixham, Devon, TQ5 8BA, United Kingdom
                Author notes
                [* ](M.R.-W.) Phone: +44(0)1895 266297; fax: +44(0)1895 273545; e-mail: Mariann.Rand-Weaver@ 123456brunel.ac.uk .
                Article
                10.1021/es402065a
                3864244
                24006913
                4e102b0c-af90-46be-9120-c018bcaa652d
                Copyright © 2013 American Chemical Society
                History
                : 08 May 2013
                : 05 September 2013
                : 04 September 2013
                Categories
                Critical Review
                Custom metadata
                es402065a
                es-2013-02065a

                General environmental science
                General environmental science

                Comments

                Comment on this article