There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed i N a t 2021 _ M i n i _ S w A V _ 1 k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( I m a g e N e t _ C h e s t X − r a y 14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.
Cracks in concrete cause initial structural damage to civil infrastructures such as buildings, bridges, and highways, which in turn causes further damage and is thus regarded as a serious safety concern. Early detection of it can assist in preventing further damage and can enable safety in advance by avoiding any possible accident caused while using those infrastructures. Machine learning-based detection is gaining favor over time-consuming classical detection approaches that can only fulfill the objective of early detection. To identify concrete surface cracks from images, this research developed a transfer learning approach (TL) based on Convolutional Neural Networks (CNN). This work employs the transfer learning strategy by leveraging four existing deep learning (DL) models named VGG16, ResNet18, DenseNet161, and AlexNet with pre-trained (trained on ImageNet) weights. To validate the performance of each model, four performance indicators are used: accuracy, recall, precision, and F1-score. Using the publicly available CCIC dataset, the suggested technique on AlexNet outperforms existing models with a testing accuracy of 99.90%, precision of 99.92%, recall of 99.80%, and F1-score of 99.86% for crack class. Our approach is further validated by using an external dataset, BWCI, available on Kaggle. Using BWCI, models VGG16, ResNet18, DenseNet161, and AlexNet achieved the accuracy of 99.90%, 99.60%, 99.80%, and 99.90% respectively. This proposed transfer learning-based method, which is based on the CNN method, is demonstrated to be more effective at detecting cracks in concrete structures and is also applicable to other detection tasks.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.