1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pingwei San Ameliorates Spleen Deficiency-Induced Diarrhea through Intestinal Barrier Protection and Gut Microbiota Modulation

      , , , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pingwei San (PWS) has been used for more than a thousand years as a traditional Chinese medicine prescription for treating spleen-deficiency diarrhea (SDD). Nevertheless, the exact mechanism by which it exerts its antidiarrheal effects remains unclear. The objective of this investigation was to explore the antidiarrheal efficacy of PWS and its mechanism of action in SDD induced by Rhubarb. To this end, UHPLC-MS/MS was used to identify the chemical composition of PWS, while the body weight, fecal moisture content, and colon pathological alterations were used to evaluate the effects of PWS on the Rhubarb-induced rat model of SDD. Additionally, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were employed to assess the expression of inflammatory factors, aquaporins (AQPs), and tight junction markers in the colon tissues. Furthermore, 16S rRNA was utilized to determine the impact of PWS on the intestinal flora of SDD rats. The findings revealed that PWS increased body weight, reduced fecal water content, and decreased inflammatory cell infiltration in the colon. It also promoted the expression of AQPs and tight junction markers and prevented the loss of colonic cup cells in SDD rats. In addition, PWS significantly increased the abundance of Prevotellaceae, Eubacterium_ruminantium_group, and Tuzzerella, while decreasing the abundance of Ruminococcus and Frisingicoccus in the feces of SDD rats. The LEfSe analysis revealed that Prevotella, Eubacterium_ruminantium_group, and Pantoea were relatively enriched in the PWS group. Overall, the findings of this study indicate that PWS exerted a therapeutic effect on Rhubarb-induced SDD in rats by both protecting the intestinal barrier and modulating the imbalanced intestinal microbiota.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Short chain fatty acids in human gut and metabolic health

          Evidence is accumulating that short chain fatty acids (SCFA) play an important role in the maintenance of gut and metabolic health. The SCFA acetate, propionate and butyrate are produced from the microbial fermentation of indigestible carbohydrates and appear to be key mediators of the beneficial effects elicited by the gut microbiome. Microbial SCFA production is essential for gut integrity by regulating the luminal pH, mucus production, providing fuel for epithelial cells and effects on mucosal immune function. SCFA also directly modulate host metabolic health through a range of tissue-specific mechanisms related to appetite regulation, energy expenditure, glucose homeostasis and immunomodulation. Therefore, an increased microbial SCFA production can be considered as a health benefit, but data are mainly based on animal studies, whereas well-controlled human studies are limited. In this review an expert group by ILSI Europe’s Prebiotics Task Force discussed the current scientific knowledge on SCFA to consider the relationship between SCFA and gut and metabolic health with a particular focus on human evidence. Overall, the available mechanistic data and limited human data on the metabolic consequences of elevated gut-derived SCFA production strongly suggest that increasing SCFA production could be a valuable strategy in the preventing gastro-intestinal dysfunction, obesity and type 2 diabetes mellitus. Nevertheless, there is an urgent need for well controlled longer term human SCFA intervention studies, including measurement of SCFA fluxes and kinetics, the heterogeneity in response based on metabolic phenotype, the type of dietary fibre and fermentation site in fibre intervention studies and the control for factors that could shape the microbiome like diet, physical activity and use of medication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome

            Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Regulation of the intestinal barrier by nutrients: The role of tight junctions

              Abstract Tight junctions (TJs) play an important role in intestinal barrier function. TJs in intestinal epithelial cells are composed of different junctional molecules, such as claudin and occludin, and regulate the paracellular permeability of water, ions, and macromolecules in adjacent cells. One of the most important roles of the TJ structure is to provide a physical barrier to luminal inflammatory molecules. Impaired integrity and structure of the TJ barrier result in a forcible activation of immune cells and chronic inflammation in different tissues. According to recent studies, the intestinal TJ barrier could be regulated, as a potential target, by dietary factors to prevent and reduce different inflammatory disorders, although the precise mechanisms underlying the dietary regulation remain unclear. This review summarizes currently available information on the regulation of the intestinal TJ barrier by food components.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                May 2023
                May 19 2023
                : 12
                : 5
                : 1122
                Article
                10.3390/antiox12051122
                10215682
                37237988
                4e05c1f1-dddb-4960-a1d4-50e4583371d1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article