39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ligands specify estrogen receptor alpha nuclear localization and degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The estrogen receptor alpha (ERα) is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate.

          Results

          A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line) was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα.

          Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2), and pure antagonists (selective estrogen regulator disruptor; SERD), ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM), 4-hydroxytamoxifen (OHT) or RU39,411, diffuse nuclear staining persisted.

          Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus.

          Conclusions

          Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on transcription. These findings provide a molecular basis for the selection of antiestrogen compounds issue from pharmacological studies aimed at improving treatment of breast cancer.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Connections and regulation of the human estrogen receptor.

          Estrogen regulates a plethora of functionally dissimilar processes in a broad range of tissues. Recent progress in the study of the molecular mechanism of action of estrogen(s) has revealed why different cells can respond to the same hormone in a different manner. Three of these findings are of particular importance: (i) There are two genetically and functionally distinct estrogen receptors that have distinct expression patterns in vivo; (ii) the positive and negative transcriptional activities of these receptors require them to engage transcription cofactors (coactivators or corepressors) in target cells; and (iii) not all cofactors are functionally equivalent, nor are they expressed in the same manner in all cells. Thus, although the estrogen receptor is required for a cell to respond to an estrogenic stimulus, the nature and extent of that response are determined by the proteins, pathways, and processes with which the receptor interacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteasome-dependent degradation of the human estrogen receptor.

            In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for the targeted degradation of proteins with short half-lives. The covalent attachment of ubiquitin to lysine residues of targeted proteins is a signal for the recognition and rapid degradation by the proteasome, a large multi-subunit protease. In this report, we demonstrate that the human estrogen receptor (ER) protein is rapidly degraded in mammalian cells in an estradiol-dependent manner. The treatment of mammalian cells with the proteasome inhibitor MG132 inhibits activity of the proteasome and blocks ER degradation, suggesting that ER protein is turned over through the ubiquitin-proteasome pathway. In addition, we show that in vitro ER degradation depends on ubiquitin-activating E1 enzyme (UBA) and ubiquitin-conjugating E2 enzymes (UBCs), and the proteasome inhibitors MG132 and lactacystin block ER protein degradation in vitro. Furthermore, the UBA/UBCs and proteasome inhibitors promote the accumulation of higher molecular weight forms of ER. The UBA and UBCs, which promote ER degradation in vitro, have no significant effect on human progesterone receptor and human thyroid hormone receptor beta proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer.

              We evaluated discordance in expression measurements for estrogen receptor (ER), progesterone receptor (PR), and HER2 between primary and recurrent tumors in patients with recurrent breast cancer and its effect on prognosis. A total of 789 patients with recurrent breast cancer were studied. ER, PR, and HER2 status were determined by immunohistochemistry (IHC) and/or FISH. Repeat markers for ER, PR, and HER2 were available in 28.9%, 27.6%, and 70.0%, respectively. Primary and recurrent tumors were classified as triple receptor-negative breast cancer (TNBC) or receptor-positive breast cancer (RPBC, i.e. expressing at least one receptor). Discordance was correlated with clinical/pathological parameters. Discordance for ER, PR, and HER2 was 18.4%, 40.3%, and 13.6%, respectively. Patients with concordant RPBC had significantly better post-recurrence survival (PRS) than discordant cases; patients with discordant receptor status had similarly unfavorable survival as patients with concordant TNBC. IHC scores for ER and PR showed weak concordance between primary and recurrent tumors. Concordance of HER2-FISH scores was higher. Concordance of quantitative hormone receptor measurements between primary and recurrent tumors is modest consistent with suboptimal reproducibility of measurement methods, particularly for IHC. Discordant cases have poor survival probably due to inappropriate use of targeted therapies. However, biological change in clinical phenotype cannot be completely excluded.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2010
                10 December 2010
                : 11
                : 98
                Affiliations
                [1 ]Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote; F-31062 Toulouse, France
                [2 ]CNRS; LBME; F-31000 Toulouse, France
                Article
                1471-2121-11-98
                10.1186/1471-2121-11-98
                3009626
                21143970
                4df6f097-b2dc-4009-93de-09652c77988f
                Copyright ©2010 Kocanova et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 March 2010
                : 10 December 2010
                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article