4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ETS transcription factor ERG cooperates with histone demethylase KDM4A

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ERG (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors. Overexpression of the ERG transcription factor is observed in half of all prostate tumors and is an underlying cause of this disease. However, the mechanisms involved in the functions of ERG are still not fully understood. In the present study, we showed that ERG can directly bind to KDM4A (also known as JMJD2A), a histone demethylase that particularly demethylates lysine 9 on histone H3. ERG and KDM4A cooperated in upregulating the promoter of Yes-associated protein 1 (YAP1), a downstream effector in the Hippo signaling pathway and crucial growth regulator. Multiple ERG binding sites within the human YAP1 gene promoter were identified and their impact on transcription was determined through mutational analysis. Furthermore, we found that ERG expression reduced histone H3 lysine 9 trimethylation at the YAP1 gene promoter, consistent with its epigenetic regulation through the ERG interaction partner, KDM4A. Finally, downregulation of YAP1 phenocopied the growth-retarding effect of ERG or KDM4A depletion in human VCaP prostate cancer cells. Collectively, these results elucidated a novel mechanism - ERG promotes prostate tumorigenesis together with KDM4A through the upregulation of YAP1. A corollary is that KDM4A as well as YAP1 inhibitors may prove beneficial for the therapy of ERG-overexpressing prostate tumors.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

          The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases.

            Histone methylation regulates chromatin structure, transcription, and epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases such as LSD1 and JHDM1, which mediate demethylation of di- and monomethylated histones. It has been unclear whether demethylases exist that reverse lysine trimethylation. We show the JmjC domain-containing protein JMJD2A reversed trimethylated H3-K9/K36 to di- but not mono- or unmethylated products. Overexpression of JMJD2A but not a catalytically inactive mutant reduced H3-K9/K36 trimethylation levels in cultured cells. In contrast, RNAi depletion of the C. elegans JMJD2A homolog resulted in an increase in general H3-K9Me3 and localized H3-K36Me3 levels on meiotic chromosomes and triggered p53-dependent germline apoptosis. Additionally, other human JMJD2 subfamily members also functioned as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. Our finding that this family of demethylases generates different methylated states at the same lysine residue provides a mechanism for fine-tuning histone methylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer.

              The Hippo pathway has been implicated in suppressing tissue overgrowth and tumor formation by restricting the oncogenic activity of YAP. However, transcriptional regulators that inhibit YAP activity have not been well studied. Here, we uncover clinical importance for VGLL4 in gastric cancer suppression and find that VGLL4 directly competes with YAP for binding TEADs. Importantly, VGLL4's tandem Tondu domains are not only essential but also sufficient for its inhibitory activity toward YAP. A peptide mimicking this function of VGLL4 potently suppressed tumor growth in vitro and in vivo. These findings suggest that disruption of YAP-TEADs interaction by a VGLL4-mimicking peptide may be a promising therapeutic strategy against YAP-driven human cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncol Rep
                Oncol. Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                June 2016
                15 April 2016
                15 April 2016
                : 35
                : 6
                : 3679-3688
                Affiliations
                [1 ]Department of Cell Biology, University of Oklahoma Health Sciences Center, OK 73104, USA
                [2 ]Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
                Author notes
                Correspondence to: Dr Ralf Janknecht, Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1464, Oklahoma City, OK 73104, USA, E-mail: ralf-janknecht@ 123456ouhsc.edu
                Article
                or-35-06-3679
                10.3892/or.2016.4747
                4869937
                27109047
                4db6ed84-015d-4baf-a920-e9bd49b59011
                Copyright © 2016, Spandidos Publications
                History
                : 07 December 2015
                : 11 January 2016
                Categories
                Articles

                erg,ets protein,histone demethylase,jmjd2a,kdm4a,prostate cancer,yap1

                Comments

                Comment on this article