10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The dietary compound luteolin inhibits pancreatic cancer growth by targeting BCL-2

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Luteolin, a bioactive flavonoid from celery ( Apium graveolens), has been rationally proved to trigger SW1990 cells to apoptosis by targeting BCL-2, and may serve as a potential agent for this cancer therapy.

          Abstract

          Overexpression of the prosurvival protein BCL-2 contributes to malignant cell initiation, progression and resistance to treatment. Agents that function as its natural antagonists targeting BCL-2 must provide therapeutic benefit. In SW1990 pancreatic cancer cells, amplified BCL-2 was observed, which was believed to offer advantages for malignant cell survival and lead to poor patient outcome. Using structure-based virtual ligand screening, luteolin was found to be a natural small-molecule inhibitor of BCL-2, which exhibited dose–response proapoptosis activity in a BCL-2 dependent manner in vitro. The cellular thermal shift assay (CETSA) and notably competitive binding assay by the microscale thermophoresis (MST) method provided the evidence that this flavonoid directly bound to BCL-2. Mechanistic studies revealed that luteolin (compound 1) displaced BAX from the hydrophobic cleft of BCL-2, allowing mitochondrial permeabilization, and inducing SW1990 cancer cells to die. Meanwhile, luteolin represented significant tumor growth inhibition in an SW1990 xenograft model. Collectively, luteolin is rationally proved to trigger SW1990 cells to apoptosis by targeting BCL-2, and may serve as a potential agent for this cancer therapy.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.

            The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay.

              The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.
                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                2018
                2018
                : 9
                : 5
                : 3018-3027
                Affiliations
                [1 ]Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
                [2 ]School of Pharmacy
                [3 ]Tongji Medical College
                [4 ]Huazhong University of Science and Technology
                [5 ]Wuhan 430030
                [6 ]Wuya College of Innovation
                [7 ]School of Traditional Chinese Materia Medica
                [8 ]Key Laboratory of Structure-Based Drug Design & Discovery
                [9 ]Ministry of Education
                [10 ]Shenyang Pharmaceutical University
                Article
                10.1039/C8FO00033F
                29770817
                4d9f9916-3976-4ee0-a50d-1b038aecaf00
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article