Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them.
Mixing natural isolates of the pathogenic bacterium Pseudomonas aeruginosa shows that the formation of biofilm is a response to antibiotic stress from competing genotypes.
Bacteria often attach to each other and to surfaces and make biofilms. These dense communities occur everywhere, including on us and inside us, where they are central to both health and disease. Biofilm formation is often viewed as the coordinated action of multiple strains that work together in order to prosper and protect each other. In this study, we provide evidence for a very different view: biofilms are formed when bacterial strains compete with one another. We mixed together different strains of the widespread pathogen Pseudomonas aeruginosa and found that pairs often make bigger biofilms than either one alone. Rather than working together, however, we show that one strain normally kills the other off and that biofilm formation is actually a response to the damage of antibiotic warfare. Our work helps to explain the widespread observation that treating bacteria with clinical antibiotics can stimulate biofilm formation. When we treat bacteria, they respond as if the attack is coming from a foreign strain that must be outnumbered and outcompeted in a biofilm.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.