2
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationship Between Gut Bacteria and Levodopa Metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is one of the most common neurodegenerative diseases, characterized by the reduction of dopamine neurons in the substantia nigra. Levodopa, as a dopamine supplement, is the gold-standard therapeutic drug for PD. The metabolism of levodopa in the periphery not only decreases its bioavailability but also affects its efficacy. Thus, it is necessary to investigate how levodopa is metabolized. A growing number of studies have shown that intestinal bacteria, such as Enterococcus faecalis, Eggerthella lenta and Clostridium sporogenes, could metabolize levodopa in different ways. In addition, several pathways to reduce levodopa metabolism by gut microbiota were confirmed to improve levodopa efficacy. These pathways include aromatic amino acid decarboxylase (AADC) inhibitors, antibiotics, pH and (S)-α-fluoromethyltyrosine (AFMT). In this review, we have summarized the metabolic process of levodopa by intestinal bacteria and analyzed potential approaches to reduce the metabolism of levodopa by gut microbiota, thus improving the efficacy of levodopa.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          A human gut microbial gene catalogue established by metagenomic sequencing.

          To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis.

            The gastrointestinal (GI) tract contains much of the body's serotonin (5-hydroxytryptamine, 5-HT), but mechanisms controlling the metabolism of gut-derived 5-HT remain unclear. Here, we demonstrate that the microbiota plays a critical role in regulating host 5-HT. Indigenous spore-forming bacteria (Sp) from the mouse and human microbiota promote 5-HT biosynthesis from colonic enterochromaffin cells (ECs), which supply 5-HT to the mucosa, lumen, and circulating platelets. Importantly, microbiota-dependent effects on gut 5-HT significantly impact host physiology, modulating GI motility and platelet function. We identify select fecal metabolites that are increased by Sp and that elevate 5-HT in chromaffin cell cultures, suggesting direct metabolic signaling of gut microbes to ECs. Furthermore, elevating luminal concentrations of particular microbial metabolites increases colonic and blood 5-HT in germ-free mice. Altogether, these findings demonstrate that Sp are important modulators of host 5-HT and further highlight a key role for host-microbiota interactions in regulating fundamental 5-HT-related biological processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat.

              The gut microbiota interacts with the host via neuroimmune, neuroendocrine and neural pathways. These pathways are components of the brain-gut-microbiota axis and preclinical evidence suggests that the microbiota can recruit this bidirectional communication system to modulate brain development, function and behaviour. The pathophysiology of depression involves neuroimmune-neuroendocrine dysregulation. However, the extent to which changes in gut microbiota composition and function mediate the dysregulation of these pathways is unknown. Thirty four patients with major depression and 33 matched healthy controls were recruited. Cytokines, CRP, Salivary Cortisol and plasma Lipopolysaccharide binding protein were determined by ELISA. Plasma tryptophan and kynurenine were determined by HPLC. Fecal samples were collected for 16s rRNA sequencing. A Fecal Microbiota transplantation was prepared from a sub group of depressed patients and controls and transferred by oral gavage to a microbiota-deficient rat model. We demonstrate that depression is associated with decreased gut microbiota richness and diversity. Fecal microbiota transplantation from depressed patients to microbiota-depleted rats can induce behavioural and physiological features characteristic of depression in the recipient animals, including anhedonia and anxiety-like behaviours, as well as alterations in tryptophan metabolism. This suggests that the gut microbiota may play a causal role in the development of features of depression and may provide a tractable target in the treatment and prevention of this disorder.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                18 May 2023
                18 May 2023
                : 21
                : 7
                : 1536-1547
                Affiliations
                [1 ] deptKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi , Guizhou, , China;
                [2 ] deptThe Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi , Guizhou, , China
                Author notes
                [* ]Address correspondence to this author at the Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China; and The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China; Tel: 187 8523 9918; E-mail: zhangfengzmc@ 123456163.com
                Article
                CN-21-1536
                10.2174/1570159X21666221019115716
                10472813
                36278467
                4d5d6c39-7f51-40a6-a61f-81edd50c469c
                © 2023 Bentham Science Publishers

                © 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode)

                History
                : 22 July 2022
                : 26 August 2022
                : 02 September 2022
                Categories
                Medicine, Neurology, Pharmacology, Neuroscience

                Pharmacology & Pharmaceutical medicine
                parkinson's disease,levodopa metabolism,gut bacteria,therapeutic efficacy,enterococcus faecalis,eggerthella lenta,clostridium sporogenes

                Comments

                Comment on this article