0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Acupuncture inhibits autophagy and repairs synapses by activating the mTOR pathway in Parkinson’s disease depression model rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d13973365e166">Acupuncture is a good treatment for depression in Parkinson's disease (DPD), so the possible mechanism of acupuncture in the treatment of DPD was explored in this study. Firstly, observing the behavioral changes of the DPD rat model, the regulation of monoamine neurotransmitters dopamine (DA) and 5-hydroxytryptamine (5-HT) in the midbrain, the change of α-synuclein (α-syn) in the striatum, the efficacy of acupuncture in the treatment of DPD was discussed. Secondly, autophagy inhibitors and activators were selected to judge the effect of acupuncture on autophagy in the DPD rat model. Finally, an mTOR inhibitor was used to observe the effect of acupuncture on the mTOR pathway in the DPD rat model. The results showed that acupuncture could improve the motor and depressive symptoms of DPD model rats, increase the content of DA and 5-HT, and decrease the content of ɑ-syn in the striatum. Acupuncture inhibited the expression of autophagy in the striatum of DPD model rats. At the same time, acupuncture upregulates p-mTOR expression, inhibits autophagy, and promotes synaptic protein expression. Therefore, we concluded that acupuncture might improve the behavior of DPD model rats by activating the mTOR pathway, inhibiting autophagy from removing α-syn and repairing synapses. </p>

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson disease

          Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation mechanisms and signaling pathways of autophagy.

            Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Emerging Evidence of the Parkinson Pandemic

              Neurological disorders are now the leading source of disability globally, and the fastest growing neurological disorder in the world is Parkinson disease. From 1990 to 2015, the number of people with Parkinson disease doubled to over 6 million. Driven principally by aging, this number is projected to double again to over 12 million by 2040. Additional factors, including increasing longevity, declining smoking rates, and increasing industrialization, could raise the burden to over 17 million. For most of human history, Parkinson has been a rare disorder. However, demography and the by-products of industrialization have now created a Parkinson pandemic that will require heightened activism, focused planning, and novel approaches.
                Bookmark

                Author and article information

                Journal
                Brain Research
                Brain Research
                Elsevier BV
                00068993
                June 2023
                June 2023
                : 1808
                : 148320
                Article
                10.1016/j.brainres.2023.148320
                36914042
                4d4c7f1a-8128-4e7a-93d2-1c42b1f6ae72
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article