24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering Radiosensitizer‐Based Metal‐Phenolic Networks Potentiate STING Pathway Activation for Advanced Radiotherapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

          Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Cytosolic DNA-Sensing cGAS–STING Pathway in Cancer

            The recognition of DNA as an immune-stimulatory molecule is an evolutionarily conserved mechanism to initiate rapid innate immune responses against microbial pathogens. The cGAS-STING pathway was discovered as an important DNA-sensing machinery in innate immunity and viral defense. Recent advances have now expanded the roles of cGAS-STING to cancer. Highly aggressive, unstable tumors have evolved to co-opt this program to drive tumorigenic behaviors. In this review, we discuss the link between the cGAS-STING DNA-sensing pathway and antitumor immunity as well as cancer progression, genomic instability, the tumor microenvironment, and pharmacologic strategies for cancer therapy. SIGNIFICANCE: The cGAS-STING pathway is an evolutionarily conserved defense mechanism against viral infections. Given its role in activating immune surveillance, it has been assumed that this pathway primarily functions as a tumor suppressor. Yet, mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines.

              Radiotherapy utilization rates for cancer vary widely internationally. It has previously been suggested that approximately 50% of all cancer patients should receive radiation. However, this estimate was not evidence-based. The aim of this study was to estimate the ideal proportion of new cases of cancer that should receive radiotherapy at least once during the course of their illness based on the best available evidence. An optimal radiotherapy utilization tree was constructed for each cancer based upon indications for radiotherapy taken from evidence-based treatment guidelines. The proportion of patients with clinical attributes that indicated a possible benefit from radiotherapy was obtained by adding epidemiologic data to the radiotherapy utilization tree. The optimal proportion of patients with cancer that should receive radiotherapy was then calculated using TreeAge (TreeAge Software, Williamstown, MA) software. Sensitivity analyses using univariate analysis and Monte Carlo simulations were performed. The proportion of patients with cancer in whom external beam radiotherapy is indicated according to the best available evidence was calculated to be 52%. Monte Carlo analysis indicated that the 95% confidence limits were from 51.7% to 53.1%. The tightness of the confidence interval suggests that the overall estimate is robust. Comparison with actual radiotherapy utilization data suggests a shortfall in actual radiotherapy delivery. This methodology allows comparison of optimal rates with actual rates to identify areas where improvements in the evidence-based use of radiotherapy can be made. It provides valuable data for radiotherapy service planning. Actual rates need to be addressed to ensure better radiotherapy utilization. Copyright 2005 American Cancer Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                March 2022
                January 31 2022
                March 2022
                : 34
                : 10
                : 2105783
                Affiliations
                [1 ]Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Taipa Macau SAR 999078 China
                [2 ]MoE Frontiers Science Center for Precision Oncology University of Macau Taipa Macau SAR 999078 China
                Article
                10.1002/adma.202105783
                34964997
                4d4597fd-b4d8-4acb-890c-86f245b93c29
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,245

                Cited by67

                Most referenced authors649