22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of FGFR3-TACC3 fusions as a potential by-pass resistance mechanism to EGFR tyrosine kinase inhibitors in EGFR mutated NSCLC patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resistance to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancers (NSCLCs) with activating EGFR mutations generally involve development of acquired secondary or tertiary EGFR mutations, such as T790M or C797S. However, case reports have demonstrated that actionable receptor tyrosine kinase fusions such as EML4-ALK, CCDC6-RET, and FGFR3-TACC3 can potentially confer resistance to EGFR TKIs. We seeked to identify the prevalence of FGFR3-TACC3 fusion transcripts as resistance mechanism to EGFR TKIs. Hybrid-capture based genomic profiling was performed on FFPE tissue samples and circulating tumor DNA isolated from peripheral whole blood in the course of clinical care. We performed a comprehensive survey of 17,319 clinical NSCLC samples (14,170 adenocarcinomas and 3149 NSCLC not otherwise specified (NOS)) and identified 5 cases of FGFR3-TACC3 containing the intact kinase domain of FGFR3 and the coiled-coil domain of TACC3 emerging after treatment with EGFR TKIs, including one previously reported index case. Of the 4 novel cases of FGFR3-TACC3, one emerged after erlotinib, one after afatinib, one after osimertinib, and one after ASP8273. These 5 cases of FGFR3-TACC3 fusions acquired post-EGFR TKI, while rare, indicate that FGFR3-TACC3 is a recurrent resistance mechanism, which can bypass EGFR blockade by all generations of EGFR TKIs in NSCLC. Routine rebiopsy and genomic profiling using platforms capable of detecting kinase fusions has the potential to inform new therapeutic strategies for patients with EGFR-mutant NSCLC progressing on TKIs.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers.

          All patients with EGF receptor (EGFR)-mutant lung cancers eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). Smaller series have identified various mechanisms of resistance, but systematic evaluation of a large number of patients to definitively establish the frequency of various mechanisms has not been conducted. Patients with lung adenocarcinomas and acquired resistance to erlotinib or gefitinib enrolled onto a prospective biopsy protocol and underwent a rebiopsy after the development of acquired resistance. Histology was reviewed. Samples underwent genotyping for mutations in EGFR, AKT1, BRAF, ERBB2, KRAS, MEK1, NRAS and PIK3CA, and FISH for MET and HER2. Adequate tumor samples for molecular analysis were obtained in 155 patients. Ninety-eight had second-site EGFR T790M mutations [63%; 95% confidence interval (CI), 55%-70%] and four had small cell transformation (3%, 95% CI, 0%-6%). MET amplification was seen in 4 of 75 (5%; 95% CI, 1%-13%). HER2 amplification was seen in 3 of 24 (13%; 95% CI, 3%-32%). We did not detect any acquired mutations in PIK3CA, AKT1, BRAF, ERBB2, KRAS, MEK1, or NRAS (0 of 88, 0%; 95% CI, 0%-4%). Overlap among mechanisms of acquired resistance was seen in 4%. This is the largest series reporting mechanisms of acquired resistance to EGFR-TKI therapy. We identified EGFR T790M as the most common mechanism of acquired resistance, whereas MET amplification, HER2 amplification, and small cell histologic transformation occur less frequently. More comprehensive methods to characterize molecular alterations in this setting are needed to improve our understanding of acquired resistance to EGFR-TKIs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing

            As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPE) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acquired EGFR C797S mediates resistance to AZD9291 in advanced non-small cell lung cancer harboring EGFR T790M

              Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for T790M prior to treatment, but at resistance three molecular subtypes emerged: 6 cases acquired the C797S mutation, 5 cases maintained the T790M mutation but did not acquire the C797S mutation, and 4 cases lost the T790M mutation despite detecting of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies able to overcome resistance mediated by EGFR C797S.
                Bookmark

                Author and article information

                Journal
                8800805
                8534
                Lung Cancer
                Lung Cancer
                Lung cancer (Amsterdam, Netherlands)
                0169-5002
                1872-8332
                5 May 2023
                September 2017
                11 July 2017
                23 May 2023
                : 111
                : 61-64
                Affiliations
                [a ]Chao Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, United States
                [b ]Vanderbilt University Medical Center, Nashville, TN, United States
                [c ]Centro Oncologico Antonio Ermirio de Morares (Coaem) Hospital, Sao Paulo, Brazil
                [d ]Eisenhower Lucy Curci Cancer Center, Ranch Mirage, CA, United States
                [e ]Indiana University, Ball Memorial Hospital, Department of Precision Genomics, Muncie, IN, United States
                [f ]Massachusetts General Hospital Cancer Center, Boston, MA, United States
                [g ]Foundation Medicine, Inc., Cambridge, MA, United States
                [h ]University of Michigan Cancer Center, Ann Arbor, MI, United States
                Author notes
                [* ]Corresponding author at: Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of Irvine School of Medicine, 101 City Drive, Bldg 56, RT81, Rm 241, Orange, CA, 92868, United States. Ignatius.ou@ 123456uci.edu , siou@ 123456uci.edu (S.-H.I. Ou).
                Article
                NIHMS1887851
                10.1016/j.lungcan.2017.07.006
                10203818
                28838400
                4d409111-c8fc-497c-91b3-e6ec14d99a62

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/BY-NC-ND/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content487

                Cited by32

                Most referenced authors335