37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The LIN28/let-7 Pathway in Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among all tumor suppressor microRNAs, reduced let-7 expression occurs most frequently in cancer and typically correlates with poor prognosis. Activation of either LIN28A or LIN28B, two highly related RNA binding proteins (RBPs) and proto-oncogenes, is responsible for the global post-transcriptional downregulation of the let-7 microRNA family observed in many cancers. Specifically, LIN28A binds the terminal loop of precursor let-7 and recruits the Terminal Uridylyl Transferase (TUTase) ZCCHC11 that polyuridylates pre-let-7, thereby blocking microRNA biogenesis and tumor suppressor function. For LIN28B, the precise mechanism responsible for let-7 inhibition remains controversial. Functionally, the decrease in let-7 microRNAs leads to overexpression of their oncogenic targets such as MYC, RAS, HMGA2, BLIMP1, among others. Furthermore, mouse models demonstrate that ectopic LIN28 expression is sufficient to drive and/or accelerate tumorigenesis via a let-7 dependent mechanism. In this review, the LIN28/let-7 pathway is discussed, emphasizing its role in tumorigenesis, cancer stem cell biology, metabolomics, metastasis, and resistance to ionizing radiation and several chemotherapies. Also, emerging evidence will be presented suggesting that molecular targeting of this pathway may provide therapeutic benefit in cancer.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Selective blockade of microRNA processing by Lin28.

          MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked posttranscriptionally in embryonic stem cells, embryonal carcinoma cells, and primary tumors. Here we show that Lin28, a developmentally regulated RNA binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we found that Lin28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin28 as a negative regulator of miRNA biogenesis and suggest that Lin28 may play a central role in blocking miRNA-mediated differentiation in stem cells and in certain cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA.

            The precise control of microRNA (miRNA) biogenesis is critical for embryonic development and normal cellular functions, and its dysregulation is often associated with human diseases. Though the birth and maturation pathway of miRNA has been established, the regulation and death pathway remains largely unknown. Here, we report the RNA-binding proteins, Lin28a and Lin28b, as posttranscriptional repressors of let-7 miRNA biogenesis. We observe that the Lin28 proteins act mainly in the cytoplasm by inducing uridylation of precursor let-7 (pre-let-7) at its 3' end. The uridylated pre-let-7 (up-let-7) fails Dicer processing and undergoes degradation. We provide a mechanism for the posttranscriptional regulation of miRNA biogenesis by Lin28 which is highly expressed in undifferentiated cells and certain cancer cells. The Lin28-mediated downregulation of let-7 may play a key role in development, stem cell programming, and tumorigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Lin28/let-7 axis regulates glucose metabolism.

              The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                28 March 2017
                2017
                : 8
                : 31
                Affiliations
                Department of Neurosurgery, University of Texas Health Science Center at Houston Houston, TX, USA
                Author notes

                Edited by: Muller Fabbri, Children's Hospital of Los Angeles, USA

                Reviewed by: Kishore B. Challagundla, University of Nebraska Medical Center, USA; Ivan Vannini, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Italy

                *Correspondence: John P. Hagan microrna@ 123456gmail.com

                This article was submitted to RNA, a section of the journal Frontiers in Genetics

                †Co-first author.

                Article
                10.3389/fgene.2017.00031
                5368188
                28400788
                4d1fef67-5330-4ec5-b6c5-e68865e2f996
                Copyright © 2017 Balzeau, Menezes, Cao and Hagan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 January 2017
                : 27 February 2017
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 138, Pages: 16, Words: 13188
                Categories
                Genetics
                Review

                Genetics
                lin28,let-7,micrornas,cancer stem cells,proto-oncogene proteins
                Genetics
                lin28, let-7, micrornas, cancer stem cells, proto-oncogene proteins

                Comments

                Comment on this article