20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Equilibrium, kinetic and thermodynamic studies on aluminum biosorption by a mycelial biomass (Streptomyces rimosus)

      , , ,
      Journal of Hazardous Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work focused on kinetic, equilibrium and thermodynamic studies on aluminum biosorption by Streptomyces rimosus biomass. Infrared spectroscopy analysis shows that S. rimosus present some groups: hydroxyl, methyl, carboxyl, amine, thiol and phosphate. The maximum biosorption capacity of S. rimosus biomass was found to be 11.76 mg g(-1) for the following optimum conditions: particle size, [250-560] μm, pH 4-4.25, biomass content of 25 g L(-1), agitation of 250 rpm and temperature of 25 °C. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms at free pH (pH(i) 4) and fixed pH (pH(f) 4). Langmuir model is the most adequate. With fixed pH, the maximum biosorption capacity is enhanced from 6.62 mg g(-1) to 11.76 mg g(-1). The thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed the feasibility, endothermic and spontaneous nature of the biosorption at 10-80 °C. The activation energy (Ea) was determined as 52.18 kJ mol(-1) using the Arrhenius equation and the rate constant of pseudo-second-order model (the most adequate kinetic model). The mean free energy was calculated as 12.91 kJ mol(-1) using the D-R isotherm model. The mechanism of Al(III) biosorption on S. rimosus could be a chemical ion exchange and carboxyl groups are mainly involved in this mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.

          Related collections

          Author and article information

          Journal
          Journal of Hazardous Materials
          Journal of Hazardous Materials
          Elsevier BV
          03043894
          November 2010
          November 2010
          : 183
          : 1-3
          : 35-43
          Article
          10.1016/j.jhazmat.2010.06.078
          20674173
          4d1fd104-212e-4c69-aec2-584160cb39f6
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content3,856

          Cited by12