Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dosage imbalance is responsible for several genetic diseases, among which Down syndrome is caused by the trisomy of human chromosome 21.

          Results

          To elucidate the extent to which the dosage imbalance of specific human chromosome 21 genes perturb distinct molecular pathways, we developed the first mouse embryonic stem (ES) cell bank of human chromosome 21 genes. The human chromosome 21-mouse ES cell bank includes, in triplicate clones, 32 human chromosome 21 genes, which can be overexpressed in an inducible manner. Each clone was transcriptionally profiled in inducing versus non-inducing conditions. Analysis of the transcriptional response yielded results that were consistent with the perturbed gene's known function. Comparison between mouse ES cells containing the whole human chromosome 21 (trisomic mouse ES cells) and mouse ES cells overexpressing single human chromosome 21 genes allowed us to evaluate the contribution of single genes to the trisomic mouse ES cell transcriptome. In addition, for the clones overexpressing the Runx1 gene, we compared the transcriptome changes with the corresponding protein changes by mass spectroscopy analysis.

          Conclusions

          We determined that only a subset of genes produces a strong transcriptional response when overexpressed in mouse ES cells and that this effect can be predicted taking into account the basal gene expression level and the protein secondary structure. We showed that the human chromosome 21-mouse ES cell bank is an important resource, which may be instrumental towards a better understanding of Down syndrome and other human aneuploidy disorders.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells.

          Embryonal stem (ES) cell lines, established in culture from peri-implantation mouse blastocysts, can colonize both the somatic and germ-cell lineages of chimaeric mice following injection into host blastocysts. Recently, ES cells with multiple integrations of retroviral sequences have been used to introduce these sequences into the germ-line of chimaeric mice, demonstrating an alternative to the microinjection of fertilized eggs for the production of transgenic mice. However, the properties of ES cells raise a unique possibility: that of using the techniques of somatic cell genetics to select cells with genetic modifications such as recessive mutations, and of introducing these mutations into the mouse germ line. Here we report the realization of this possibility by the selection in vitro of variant ES cells deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT; EC 2.4.2.8), their use to produce germline chimaeras resulting in female offspring heterozygous for HPRT-deficiency, and the generation of HPRT-deficient preimplantation embryos from these females. In human males, HPRT deficiency causes Lesch-Nyhan syndrome, which is characterized by mental retardation and self-mutilation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid identification of proteins by peptide-mass fingerprinting.

            Developments in 'soft' ionisation techniques have revolutionized mass-spectro-metric approaches for the analysis of protein structure. For more than a decade, such techniques have been used, in conjuction with digestion b specific proteases, to produce accurate peptide molecular weight 'fingerprints' of proteins. These fingerprints have commonly been used to screen known proteins, in order to detect errors of translation, to characterize post-translational modifications and to assign diulphide bonds. However, the extent to which peptide-mass information can be used alone to identify unknown sample proteins, independent of other analytical methods such as protein sequence analysis, has remained largely unexplored. We report here on the development of the molecular weight search (MOWSE) peptide-mass database at the SERC Daresbury Laboratory. Practical experience has shown that sample proteins can be uniquely identified from a few as three or four experimentally determined peptide masses when these are screened against a fragment database that is derived from over 50 000 proteins. Experimental errors of a few Daltons are tolerated by the scoring algorithms, thus permitting the use of inexpensive time-of-flight mass spectrometers. As with other types of physical data, such as amino-acid composition or linear sequence, peptide masses provide a set of determinants that are sufficiently discriminating to identify or match unknown sample proteins. Peptide-mass fingerprints can prove as discriminating as linear peptide sequences, but can be obtained in a fraction of the time using less protein. In many cases, this allows for a rapid identification of a sample protein before committing it to protein sequence analysis. Fragment masses also provide information, at the protein level, that is complementary to the information provided by large-scale DNA sequencing or mapping projects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aneuploidy: cells losing their balance.

              A change in chromosome number that is not the exact multiple of the haploid karyotype is known as aneuploidy. This condition interferes with growth and development of an organism and is a common characteristic of solid tumors. Here, we review the history of studies on aneuploidy and summarize some of its major characteristics. We will then discuss the molecular basis for the defects caused by aneuploidy and end with speculations as to whether and how aneuploidy, despite its deleterious effects on organismal and cellular fitness, contributes to tumorigenesis.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2010
                22 June 2010
                : 11
                : 6
                : R64
                Affiliations
                [1 ]Telethon Institute of Genetics and Medicine, Via P. Castellino 111, Napoli, 80131, Italy
                [2 ]Current address: Université Paris Diderot - Paris 7, Paris Cedex 13, Paris, 75205, France
                [3 ]Institut für Humangenetik Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, D-13353, Germany
                [4 ]Current address: Lysosomal Diseases Research Unit, SA Pathology, 72 King William Road, North Adelaide, South Australia, 5006, Australia
                [5 ]Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
                [6 ]Genomics Platform, University of Geneva Medical School, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
                [7 ]Current address: Dipartimento di Patologia Generale, Seconda Universita' di Napoli, Via De Crecchio 7, Napoli, 80100, Italy
                Article
                gb-2010-11-6-r64
                10.1186/gb-2010-11-6-r64
                2911112
                20569505
                4cb3a83f-5b19-467c-90d7-3f38b14f8d16
                Copyright ©2010 De Cegli et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 April 2010
                : 3 June 2010
                : 22 June 2010
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article