Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High‐Efficiency and Narrow‐Band Near‐Ultraviolet Emitters with Low CIE y of 0.03 by Incorporating Extra Weak Charge Transfer Channel into Multi‐Resonance Skeleton

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hybridized local and charge‐transfer (HLCT) excited‐state emitters can effectively utilize non‐radiative triplet excitons through high‐lying reverse intersystem crossing (hRISC), but they are mostly limited to the donor‐ π‐acceptor type molecules. It is a great challenge to develop high‐performance near‐ultraviolet (NUV) emitters with narrow‐band emission by HLCT due to the large carrier injection barriers and high triplet energy. In this work, by incorporating planar multi‐resonance (MR) skeleton of oxygen‐bridged triphenylborane (BO) and weak electron‐donating unit of tetraphenyl‐silane (TPS), two NUV emitters of tBOSi and tBOSiCz are developed, where an extra weak charge transfer (CT) channel between BO skeleton and peripheral phenyl in TPS is observed to increase CT component and activate hot exciton channel of hRISC. As a result, tBOSi and tBOSiCz show an outstanding narrow‐band NUV emission at 414 nm with a FWHM of about 32 nm in solution‐processed organic light‐emitting diodes (OLEDs), even at a heavy doping ratio. The best NUV electroluminescent properties are further achieved in the optimal tBOSi‐doped OLEDs with a record efficiency of 9.15% and a low CIE y of 0.034. This work provides a profound guidance for developing high‐performance narrow‐band NUV emitters by an extra weak CT channel into MR skeleton to activate HLCT emission.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly efficient organic light-emitting diodes from delayed fluorescence.

            The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Organic electroluminescent diodes

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Optical Materials
                Advanced Optical Materials
                Wiley
                2195-1071
                2195-1071
                August 2023
                May 2023
                August 2023
                : 11
                : 15
                Affiliations
                [1 ] School of Materials Science and Engineering Jiangsu Engineering Research Center of Light‐Electricity‐Heat Energy‐Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Key Laboratories of Environment‐Friendly Polymers National Experimental Demonstration Center for Materials Science and Engineering Changzhou University Changzhou 213164 P. R. China
                [2 ] State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
                Article
                10.1002/adom.202300195
                4ca7a36a-6722-4c63-999d-a948b0d91e16
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article