15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      When Did Life Likely Emerge on Earth in an RNA‐First Process?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions.

          At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Earth's early atmosphere.

            J. Kasting (1993)
            Ideas about atmospheric composition and climate on the early Earth have evolved considerably over the last 30 years, but many uncertainties still remain. It is generally agreed that the atmosphere contained little or no free oxygen initially and that oxygen concentrations increased markedly near 2.0 billion years ago, but the precise timing of and reasons for its rise remain unexplained. Likewise, it is usually conceded that the atmospheric greenhouse effect must have been higher in the past to offset reduced solar luminosity, but the levels of atmospheric carbon dioxide and other greenhouse gases required remain speculative. A better understanding of past atmospheric evolution is important to understanding the evolution of life and to predicting whether Earth-like planets might exist elsewhere in the galaxy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life.

              Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.
                Bookmark

                Author and article information

                Journal
                ChemSystemsChem
                ChemSystemsChem
                Wiley
                2570-4206
                2570-4206
                April 2020
                April 2020
                : 2
                : 2
                Affiliations
                [1 ]Foundation for Applied Molecular Evolution Alachua FL USA
                [2 ]Firebird Biomolecular Sciences LLC Alachua FL USA
                [3 ]Department of Earth, Planetary, and Space SciencesUniversity of California Los Angeles USA
                [4 ]Earth Life Science InstituteTokyo Institute of Technology Tokyo Japan
                [5 ]Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Germany
                [6 ]Department of Geological SciencesUniversity of Colorado Boulder CO USA
                [7 ]Hungarian Academy of Sciences Budapest Hungary
                [8 ]School of GeosciencesUniversity of South Florida Tampa, FL USA
                [9 ]Department of Earth and Environmental SciencesUniversity of Rochester Rochester NY USA
                Article
                10.1002/syst.201900035
                4c817d03-18af-4526-b53d-dc6a1c809634
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article