5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges on optimization of 3D-printed bone scaffolds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold’s internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool

            Background Medical Image segmentation is an important image processing step. Comparing images to evaluate the quality of segmentation is an essential part of measuring progress in this research area. Some of the challenges in evaluating medical segmentation are: metric selection, the use in the literature of multiple definitions for certain metrics, inefficiency of the metric calculation implementations leading to difficulties with large volumes, and lack of support for fuzzy segmentation by existing metrics. Result First we present an overview of 20 evaluation metrics selected based on a comprehensive literature review. For fuzzy segmentation, which shows the level of membership of each voxel to multiple classes, fuzzy definitions of all metrics are provided. We present a discussion about metric properties to provide a guide for selecting evaluation metrics. Finally, we propose an efficient evaluation tool implementing the 20 selected metrics. The tool is optimized to perform efficiently in terms of speed and required memory, also if the image size is extremely large as in the case of whole body MRI or CT volume segmentation. An implementation of this tool is available as an open source project. Conclusion We propose an efficient evaluation tool for 3D medical image segmentation using 20 evaluation metrics and provide guidelines for selecting a subset of these metrics that is suitable for the data and the segmentation task.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoinduction, osteoconduction and osseointegration.

              Osteoinduction is the process by which osteogenesis is induced. It is a phenomenon regularly seen in any type of bone healing process. Osteoinduction implies the recruitment of immature cells and the stimulation of these cells to develop into preosteoblasts. In a bone healing situation such as a fracture, the majority of bone healing is dependent on osteoinduction. Osteoconduction means that bone grows on a surface. This phenomenon is regularly seen in the case of bone implants. Implant materials of low biocompatibility such as copper, silver and bone cement shows little or no osteoconduction. Osseointegration is the stable anchorage of an implant achieved by direct bone-to-implant contact. In craniofacial implantology, this mode of anchorage is the only one for which high success rates have been reported. Osseointegration is possible in other parts of the body, but its importance for the anchorage of major arthroplasties is under debate. Ingrowth of bone in a porous-coated prosthesis may or may not represent osseointegration.
                Bookmark

                Author and article information

                Contributors
                m.bahraminasab@yahoo.com , m.bahraminasab@semums.ac.ir
                Journal
                Biomed Eng Online
                Biomed Eng Online
                BioMedical Engineering OnLine
                BioMed Central (London )
                1475-925X
                3 September 2020
                3 September 2020
                2020
                : 19
                : 69
                Affiliations
                [1 ]GRID grid.486769.2, ISNI 0000 0004 0384 8779, Nervous System Stem Cells Research Center, , Semnan University of Medical Sciences, ; Semnan, Iran
                [2 ]GRID grid.486769.2, ISNI 0000 0004 0384 8779, Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, , Semnan University of Medical Sciences, ; Semnan, Iran
                Article
                810
                10.1186/s12938-020-00810-2
                7469110
                32883300
                4c4d0e8e-04fb-4151-b851-c14801f47d11
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 April 2020
                : 22 August 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Biomedical engineering
                customized bone scaffold,computational design,composites,functionally graded materials,additive manufacturing,bioprinting,metadata analysis

                Comments

                Comment on this article