34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg −1 silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4 n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera B utyrivibrio, H owardella, O ribacterium, P seudobutyrivibrio and R oseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus S uccinovibrio and R oseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem.

          Recent advances in chromatographic identification of CLA isomers, combined with interest in their possible properties in promoting human health (e.g., cancer prevention, decreased atherosclerosis, improved immune response) and animal performance (e.g., body composition, regulation of milk fat synthesis, milk production), has renewed interest in biohydrogenation and its regulation in the rumen. Conventional pathways of biohydrogenation traditionally ignored minor fatty acid intermediates, which led to the persistence of oversimplified pathways over the decades. Recent work is now being directed toward accounting for all possible trans-18:1 and CLA products formed, including the discovery of novel bioactive intermediates. Modern microbial genetics and molecular phylogenetic techniques for identifying and classifying microorganisms by their small-subunit rRNA gene sequences have advanced knowledge of the role and contribution of specific microbial species in the process of biohydrogenation. With new insights into the pathways of biohydrogenation now available, several attempts have been made at modeling the pathway to predict ruminal flows of unsaturated fatty acids and biohydrogenation intermediates across a range of ruminal conditions. After a brief historical account of major past accomplishments documenting biohydrogenation, this review summarizes recent advances in 4 major areas of biohydrogenation: the microorganisms involved, identification of intermediates, the biochemistry of key enzymes, and the development and testing of mathematical models to predict biohydrogenation outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools.

            The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies. Published 2011. This article is a US Government work and is in the public domain in the USA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen.

              Ruminal microorganisms hydrogenate polyunsaturated fatty acids (PUFA) present in forages and thereby restrict the availability of health-promoting PUFA in meat and milk. The aim of this study was to investigate PUFA metabolism and the influence of PUFA on members of the ruminal microflora. Eleven of 26 predominant species of ruminal bacteria metabolised linoleic acid (LA; cis-9,cis-12-18:2) substantially. The most common product was vaccenic acid (trans-11-18:1), produced by species related to Butyrivibrio fibrisolvens. alpha-Linolenic acid (LNA; cis-9,cis-12,cis-15-18:3) was metabolised mostly by the same species. The fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n - 3)) and docosahexaenoic acid (DHA; 22:6(n - 3)) were not metabolised. Cellulolytic bacteria did not grow in the presence of any PUFA at 50 microg ml(-1), nor did some butyrate-producing bacteria, including the stearate producer Clostridium proteoclasticum, Butyrivibrio hungatei and Eubacterium ruminantium. Toxicity to growth was ranked EPA > DHA > LNA > LA. Cell integrity, as measured using propidium iodide, was damaged by LA in all 26 bacteria, but to different extents. Correlations between its effects on growth and apparent effects on cell integrity in different bacteria were low. Combined effects of LA and sodium lactate in E. ruminantium and C. proteoclasticum indicated that LA toxicity is linked to metabolism in butyrate-producing bacteria. PUFA also inhibited the growth of the cellulolytic ruminal fungi, with Neocallimastix frontalis producing small amounts of cis-9,trans-11-18:2 (CLA) from LA. Thus, while dietary PUFA might be useful in suppressing the numbers of biohydrogenating ruminal bacteria, particularly C. proteoclasticum, care should be taken to avoid unwanted effects in suppressing cellulolysis.
                Bookmark

                Author and article information

                Journal
                Microb Biotechnol
                Microb Biotechnol
                mbt2
                Microbial Biotechnology
                BlackWell Publishing Ltd (Oxford, UK )
                1751-7915
                1751-7915
                March 2015
                16 September 2014
                : 8
                : 2
                : 331-341
                Affiliations
                [1 ]Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University Penglais Campus, Aberystwyth, SY23 3DA, UK
                [2 ]Hybu Cig Cymru – Meat Promotion Wales Ty Rheidol Parc Merlin, Aberystwyth, UK
                Author notes
                * For correspondence. E-mail hnh@ 123456aber.ac.uk ; Tel. (+44) 1970 823202; Fax (+44) 1970 823155.
                [†]

                Present address: Department of Animal Science, Kyungpook National University Sangju, 742-711, Korea

                Funding Information This work was supported by the Welsh Government, Hybu Cig Cymru, Biotechnology and Biological Sciences Research Council (BBSRC), and European Union Prosafebeef (FOOD-CT-2006–36241) projects.

                Subject Category Microbial population and community ecology and/or microbial ecology and functional diversity of natural habitats.

                Article
                10.1111/1751-7915.12164
                4353346
                25223749
                4c0fe445-002b-4970-bda8-9b4138d4af97
                Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2014
                : 05 August 2014
                : 06 August 2014
                Categories
                Research Articles

                Biotechnology
                Biotechnology

                Comments

                Comment on this article