27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral microbes form a complex and dynamic biofilm community, which is subjected to daily host and environmental challenges. Dysbiosis of the oral biofilm is correlated with local and distal infections and postulating a baseline for the healthy core oral microbiota provides an opportunity to examine such shifts during the onset and recurrence of disease. Here we quantified the daily, weekly, and monthly variability of the oral microbiome by sequencing the largest oral microbiota time-series to date, covering multiple oral sites in ten healthy individuals. Temporal dynamics of salivary, dental, and tongue consortia were examined by high-throughput 16S rRNA gene sequencing over 90 days, with four individuals sampled additionally 1 year later. Distinct communities were observed between dental, tongue, and salivary samples, with high levels of similarity observed between the tongue and salivary communities. Twenty-six core OTUs that classified within Streptococcus, Fusobacterium, Haemophilus, Neisseria, Prevotella, and Rothia genera were present in ≥95% samples and accounted for ~65% of the total sequence data. Phylogenetic diversity varied from person to person, but remained relatively stable within individuals over time compared to inter-individual variation. In contrast, the composition of rare microorganisms was highly variable over time, within most individuals. Using machine learning, an individual's oral microbial assemblage could be correctly assigned to them with 88–97% accuracy, depending on the sample site; 83% of samples taken a year after initial sampling could be confidently traced back to the source subject.

          Peering into the mouth: Bacterial turnover in plaque and saliva

          A study of bacteria in the mouth reveals insights into their diversity, stability, and variability among people and over time. By tracking daily, weekly, and monthly fluctuations of plaque and salivary bacteria in ten healthy volunteers, Dilani Senadheera at the Faculty of Dentistry, University of Toronto and co-researchers in Canada reveal significant differences in the “microbiome” present in dental, tongue and saliva samples over time. They found considerable variation in these communities between individuals, sufficient to identify a person with “bacterial fingerprints” using plaque or saliva even after 1 year. The researchers reveal a “core community” that spans different persons, oral sites, and time, suggesting some level of stability. This study is useful to understand the diversity and community drifts in different oral sites over time, which is important when plaque and saliva are used for bacterial analysis in diagnostic, risk-prediction, and forensic applications.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Periodontitis: a polymicrobial disruption of host homeostasis.

            Periodontitis, or gum disease, affects millions of people each year. Although it is associated with a defined microbial composition found on the surface of the tooth and tooth root, the contribution of bacteria to disease progression is poorly understood. Commensal bacteria probably induce a protective response that prevents the host from developing disease. However, several bacterial species found in plaque (the 'red-complex' bacteria: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) use various mechanisms to interfere with host defence mechanisms. Furthermore, disease may result from 'community-based' attack on the host. Here, I describe the interaction of the host immune system with the oral bacteria in healthy states and in diseased states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Defining the healthy "core microbiome" of oral microbial communities

              Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
                Bookmark

                Author and article information

                Contributors
                dilani.senadheera@utoronto.ca
                Journal
                NPJ Biofilms Microbiomes
                NPJ Biofilms Microbiomes
                NPJ Biofilms and Microbiomes
                Nature Publishing Group UK (London )
                2055-5008
                26 January 2017
                26 January 2017
                2017
                : 3
                : 2
                Affiliations
                [1 ]ISNI 0000 0004 1936 8200, GRID grid.55602.34, Faculty of Computer Science, , Dalhousie University, ; Halifax, NS Canada
                [2 ]GRID grid.17063.33, Faculty of Dentistry, , University of Toronto, ; Toronto, ON Canada
                [3 ]ISNI 0000 0000 8644 1405, GRID grid.46078.3d, Department of Biology, , University of Waterloo, ; Waterloo, ON Canada
                [4 ]ISNI 0000 0004 0473 9881, GRID grid.416166.2, Department of Dentistry, Division of Research, , Mount Sinai Hospital, ; Toronto, Ontario Canada
                [5 ]ISNI 0000 0004 1937 0546, GRID grid.12136.37, School of Dental Medicine, , Tel Aviv University, ; Tel Aviv, Israel
                Article
                11
                10.1038/s41522-016-0011-0
                5445578
                28649403
                4bf7cdd7-4d14-4e30-8211-3b4f4a303c02
                © The Author(s) 2017

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 7 June 2016
                : 9 September 2016
                : 2 October 2016
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article