11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Study of Complete Blood Count Between High-Altitude and Sea-Level Residents in West Saudi Arabia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reduction in oxygen partial pressure at high altitudes leads to diminished oxygen saturation in the arteries, stimulating erythropoietin production and erythropoiesis to restore appropriate oxygenation. While many studies have explored acclimatization to high altitude and its effects on complete blood count (CBC) parameters, our research uniquely examined both male and female healthy individuals, emphasizing the novelty of gender-specific observations. We analyzed 1,160 individuals in Taif (Al Hada), east Saudi Arabia, a high-altitude region, and compared them to 1,044 counterparts in Jeddah, at sea level. Our results revealed significant variations in CBC parameters, including white blood count, red blood count, hemoglobin, hematocrit, platelets, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, reflecting the body's hypoxic response. These variations were observed in both genders, with specific differences noted between males and females. For example, NEU (neutrophils), representing the absolute count of a type of white blood cell essential in the immune system's defense, showed significant variations for males. The male results show that the variation in males between the sea level and high altitudes indicated significant p-values for all CBC parameters except NEU between at sea level (Jeddah city), whose p-value was 0.8696, and at high altitude (Taif city, Al Hada). In contrast, MONO (monocytes), another type of white blood cell involved in immune response, and RBC (red blood cells), responsible for oxygen transport, were mentioned but did not show significant variations for females. The full results for females showed significant results (P<0.0001) for BASO, HCT, HGB, MCH, MCHC, MPV, PLT, RDW, and WBC between the sea-level altitude and high altitude for females. Also, EOS and LYM showed significant P-values of 0.0002 and 0.0001, respectively, while MONO, NEU, and RBC indicated no significance between the sea-level altitude and high altitude for females. The p-values of MONO, NEU, and RBC, respectively, were 0.1907, 0.1259, and 0.0677. The results for both genders combined showed significant variations of all CBC parameters (P<0.0001) between the sea-level altitude and high altitude except for MONO, NEU, and RBC, which were not significant for both males and females, with p-values of 0.1589, 0.2911, and 0.0595, respectively. All unhealthy individuals were excluded from the study with any condition that would cause significant changes in CBC parameters and would skew the results, ensuring a focus on physiological adaptations in healthy subjects. By comparing healthy individuals and examining each gender separately, this study contributes valuable insights into high-altitude acclimatization, enhancing our understanding of physiological adaptations and potentially guiding health management in such environments within the normal range.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells

          During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia.

            Research on humans at high-altitudes contributes to understanding the processes of human adaptation to the environment and evolution. The unique stress at high altitude is hypobaric hypoxia caused by the fall in barometric pressure with increasing altitude and the consequently fewer oxygen molecules in a breath of air, as compared with sea level. The natural experiment of human colonization of high-altitude plateaus on three continents has resulted in two-perhaps three-quantitatively different arterial-oxygen-content phenotypes among indigenous Andean, Tibetan and Ethiopian high-altitude populations. This paper illustrates these contrasting phenotypes by presenting evidence for higher hemoglobin concentration and percent of oxygen saturation of hemoglobin among Andean highlanders as compared with Tibetans at the same altitude and evidence that Ethiopian highlanders do not differ from sea-level in these two traits. Evolutionary processes may have acted differently on the colonizing populations to cause the different patterns of adaptation. Hemoglobin concentration has significant heritability in Andean and Tibetan samples. Oxygen saturation has no heritability in the Andean sample, but does among Tibetans where an autosomal dominant major gene for higher oxygen saturation has been detected. Women estimated with high probability to have high oxygen saturation genotypes have more surviving children than women estimated with high probability to have the low oxygen saturation genotype. These findings suggest the hypothesis that ongoing natural selection is increasing the frequency of the high saturation allele at this major gene locus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness.

              This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induce BV expansion: PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, while EV decreases may result from increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation which suppresses erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                8 September 2023
                September 2023
                : 15
                : 9
                : e44889
                Affiliations
                [1 ] Biological Sciences Department, King Abdulaziz University, Taif, SAU
                [2 ] Science Department, Shorouq Al Mamlakah International School, Taif, SAU
                [3 ] Hematology Laboratory, King Fahad Armed Forces Hospital, Jeddah, SAU
                [4 ] Hematology Department, Al Hada Armed Forces Hospital, Taif, SAU
                [5 ] Immunology Department, Al Hada Armed Forces Hospital, Taif, SAU
                [6 ] Molecular Diagnostic Unit, Al Hada Armed Forces Hospital, Taif, SAU
                [7 ] Biological Sciences Department, King Abdulaziz University, Jeddah, SAU
                [8 ] Clinical Laboratory Medicine Department, Al Hada Armed Forces Hospital, Taif, SAU
                [9 ] City for Scientific Research and Technological Applications, Genetic Engineering and Biotechnology Research Institute (GEBRI), Alexandria, EGY
                Author notes
                Article
                10.7759/cureus.44889
                10560399
                37814743
                4bdb986f-af8f-4699-bf7e-4b582befc0c4
                Copyright © 2023, Alharthi et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 September 2023
                Categories
                Family/General Practice
                Public Health
                Hematology

                sea level,complete blood count,effect of high altitude,cbc,hematology

                Comments

                Comment on this article