20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well known that pesticides are widely used compounds. In fact, their use in agriculture, forestry, fishery and the food industry has granted a huge improvement in terms of productive efficiency. However, a great number of epidemiological surveys have demonstrated that these toxic compounds can interact and exert negative effects not only with their targets (pests, herbs and fungi), but also with the rest of the environment, including humans. This is particularly relevant in the case of workers involved in the production, transportation, preparation and application of these toxicants. Accordingly, a growing body of evidence has demonstrated the correlation between occupational exposure to pesticides and the development of a wide spectrum of pathologies, ranging from eczema to neurological diseases and cancer. Pesticide exposure is often quite difficult to establish, as many currently used modules do not take into account all of the many variables that can occur in a diverse environment, such as the agricultural sector, and the assessment of the real risk for every single worker is problematic. Indeed, the use of personal protection equipment is necessary while handling these toxic compounds, but education of workers can be even more important: personal contamination with pesticides may occur even in apparently harmless situations. This review summarises the most recent findings describing the association between pesticide occupational exposure and the development of chronic diseases.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites

          Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterochromatin and epigenetic control of gene expression.

            Eukaryotic DNA is organized into structurally distinct domains that regulate gene expression and chromosome behavior. Epigenetically heritable domains of heterochromatin control the structure and expression of large chromosome domains and are required for proper chromosome segregation. Recent studies have identified many of the enzymes and structural proteins that work together to assemble heterochromatin. The assembly process appears to occur in a stepwise manner involving sequential rounds of histone modification by silencing complexes that spread along the chromatin fiber by self-oligomerization, as well as by association with specifically modified histone amino-terminal tails. Finally, an unexpected role for noncoding RNAs and RNA interference in the formation of epigenetic chromatin domains has been uncovered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A unified theory of gene expression.

              The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                November 2016
                10 October 2016
                10 October 2016
                : 14
                : 5
                : 4475-4488
                Affiliations
                [1 ]Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, ‘Policlinico G. Martino’ Hospital, University of Messina, I-98125 Messina, Italy
                [2 ]Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
                Author notes
                Correspondence to: Dr Silvia Gangemi, Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, ‘Policlinico G. Martino’ Hospital, University of Messina, Via Consolare Valeria, I-98125 Messina, Italy, E-mail: silviagangemi@ 123456hotmail.com
                [*]

                Contributed equally

                Article
                mmr-14-05-4475
                10.3892/mmr.2016.5817
                5101964
                27748877
                4bd4329c-f028-4705-8d00-0b68ebe4f2cf
                Copyright: © Gangemi et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 02 June 2016
                : 30 September 2016
                Categories
                Review

                pesticides,chronic diseases,occupational exposure,exposure assessment,risk assessment

                Comments

                Comment on this article