15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms for Microtubule Length Regulation by Kinesin-8 and XMAP215 Proteins

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cytoskeleton is regulated by a plethora of enzymes that influence the stability and dynamics of cytoskeletal filaments. Molecular motors of the kinesin-8 protein family depolymerise microtubules in a length-dependent manner, and experimental and theoretical evidence suggest a role for kinesin-8 in the dynamic regulation of microtubules. However, so far the detailed molecular mechanisms how these molecular motors interact with the growing microtubule tip remain elusive. Here we investigate two interaction scenarios for kinesin-8 and the microtubule tip. We give a comprehensive analysis of regimes where length-regulation is possible and characterise how the stationary length depends on the biochemical rates and the bulk concentrations of the various proteins. For a neutral scenario, where microtubules grow irrespective of whether the microtubule tip is occupied by a molecular motor, length regulation is possible only for a narrow range of biochemical rates and limited to small polymerisation rates. In contrast, for an inhibition scenario, where the presence of a motor at the microtubule tip inhibits microtubule growth, the regime of length regulation is extremely broad and includes high growth rates. These results also apply to situations where polymerising enzymes, like XMAP215, and kinesin-8 mutually exclude each other from the microtubule tip. We also investigate the stochastic dynamics of the two scenarios. While for the neutral scenario length is tightly controlled, length dynamics is intermittent for the inhibition scenario and exhibits extended periods of microtubule growth and shrinkage, reminiscent of microtubule dynamic instability. On a broader perspective, the set of models established in this work quite generally suggests that mutual exclusion of molecules at the ends of cytoskeletal filaments is an important factor for filament dynamics and regulation.

          Related collections

          Author and article information

          Journal
          22 May 2014
          Article
          10.1098/rsfs.2014.0031
          1405.5847
          4ba63b59-48db-4afe-bbac-36bd6ab3f4d3

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          LMU-ASC 014/14
          Interface Focus. 2014 4:20140032
          21 pages, 8 figures
          q-bio.SC cond-mat.soft

          Comments

          Comment on this article