69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Single copy shRNA configuration for ubiquitous gene knockdown in mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference through the expression of small hairpin RNA (shRNA) molecules has become a very promising tool in reverse mouse genetics as it may allow inexpensive and rapid gene function analysis in vivo. However, the prerequisites for ubiquitous and reproducible shRNA expression are not well defined. Here we show that a single copy shRNA-transgene can mediate body-wide gene silencing in mice when inserted in a defined locus of the genome. The most commonly used promoters for shRNA expression, H1 and U6, showed a comparably broad activity in this configuration. Taken together, the results define a novel approach for efficient interference with expression of defined genes in vivo. Moreover, we provide a rapid strategy for the production of gene knockdown mice combining recombinase mediated cassette exchange and tetraploid blastocyst complementation approaches.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.

          RNA interference (RNAi) was first recognized in Caenorhabditis elegans as a biological response to exogenous double-stranded RNA (dsRNA), which induces sequence-specific gene silencing. RNAi represents a conserved regulatory motif, which is present in a wide range of eukaryotic organisms. Recently, we and others have shown that endogenously encoded triggers of gene silencing act through elements of the RNAi machinery to regulate the expression of protein-coding genes. These small temporal RNAs (stRNAs) are transcribed as short hairpin precursors (approximately 70 nt), processed into active, 21-nt RNAs by Dicer, and recognize target mRNAs via base-pairing interactions. Here, we show that short hairpin RNAs (shRNAs) can be engineered to suppress the expression of desired genes in cultured Drosophila and mammalian cells. shRNAs can be synthesized exogenously or can be transcribed from RNA polymerase III promoters in vivo, thus permitting the construction of continuous cell lines or transgenic animals in which RNAi enforces stable and heritable gene silencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cre-lox-regulated conditional RNA interference from transgenes.

            We have generated two lentiviral vectors for conditional, Cre-lox-regulated, RNA interference. One vector allows for conditional activation, whereas the other permits conditional inactivation of short hairpin RNA (shRNA) expression. The former is based on a strategy in which the mouse U6 promoter has been modified by including a hybrid between a LoxP site and a TATA box. The ability to efficiently control shRNA expression by using these vectors was shown in cell-based experiments by knocking down p53, nucleophosmin and DNA methyltransferase 1. We also demonstrate the usefulness of this approach to achieve conditional, tissue-specific RNA interference in Cre-expressing transgenic mice. Combined with the growing array of Cre expression strategies, these vectors allow spatial and temporal control of shRNA expression in vivo and should facilitate functional genetic analysis in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice.

              A general strategy for selecting insertion mutations in mice has been devised. Constructs lacking a promoter and including a beta-galactosidase gene, or a reporter gene encoding a protein with both beta-galactosidase and neomycin phosphotransferase activity, were designed so that activation of the reporter gene depends on its insertion within an active transcription unit. Such insertion events create a mutation in the tagged gene and allow its expression to be followed by beta-galactosidase activity. Introduction of promoter trap constructs into embryonic stem (ES) cells by electroporation or retroviral infection has led to the derivation of transgenic lines that show a variety of beta-galactosidase expression patterns. Intercrossing of heterozygotes from 24 strains that express beta-galactosidase identified 9 strains in which homozygosity leads to an embryonic lethality. Because no overt phenotype was detected in the remaining strains, these results suggest that a substantial proportion of mammalian genes identified by this approach are not essential for development.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                14 April 2005
                : 33
                : 7
                : e67
                Affiliations
                1Artemis Pharmaceuticals GmbH Neurather Ring 1, 51063 Cologne, Germany
                2Department of Mouse Genetics and Metabolism and Center for Molecular Medicine (CMMC), Institute for Genetics Germany
                3Klinik II and Poliklinik für Innere Medizin, University of Cologne Germany
                4Department of Applied Natural Sciences, University of Applied Science Gelsenkirchen August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
                Author notes
                *To whom correspondence should be addressed. Tel: +49 221 9645342; Fax: +49 221 964 5321; Email: j.seibler@ 123456artemispharma.de

                Present address: Ralf Kühn, GSF Research Center, Institute for Developmental Genetics, Neuherberg/Munich, Germany

                Article
                10.1093/nar/gni065
                1079974
                15831785
                4b9979cf-df2e-48ab-9673-80f76d1c6b40
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 24 January 2005
                : 18 March 2005
                : 18 March 2005
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content395

                Cited by25

                Most referenced authors1,762