17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of fungal statins on high-glucose-induced mouse mesangial cell hypocontractility may involve filamentous actin, t-complex polypeptide 1 subunit beta, and glucose regulated protein 78

      , , , ,
      Translational Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glomerular hyperfiltration is associated with mesangial cell hypocontractility. How 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) influence mesangial cell contraction is unclear. We investigated the effect of statins on mesangial cell hypocontractility and identified candidate proteins and filamentous/globular (F/G)-actin involved in this process. A high-glucose-induced mouse mesangial cell hypocontractility model was treated with fungal statins, simvastatin (Sim), lovastatin (Lov), and pravastatin (Pra). The optimum statin dose was determined by an 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and then applied to a cell model. A 2-dimensional gel/matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis was used to evaluate protein expression cells incubated in the presence of a normal level of glucose (N), a high level of glucose (H), and a high level of glucose plus Sim (H + S). Candidate proteins were analyzed. Finally, the ratio of F/G actin in groups N, H, and H+S was evaluated. The MTT assay showed that Sim and Lov exerted dose- and time-related inhibition of proliferation of mesangial cells at N, but Pra had no effect. The optimum doses selected for Sim was 1 microM and for Lov was 3 microM, which were 1 increment before significant proliferation inhibition. Both doses reversed cell hypocontractility significantly, but Sim was chosen for further proteomic and F/G actin analyses. Proteomic analysis of groups N, H, and H + S showed that 18 proteins were involved in hypocontractility. These proteins were grouped and analyzed based on their known functions. Two selected proteins, TCP-1beta and GRP78, that were upregulated and downregulated, respectively, were confirmed by Western blot and immunohistochemistry. In regard to the F/G actin, group H had a significantly lower ratio than that of group N, and group H + S returned to a level similar to that of group N. In conclusion, Sim and Lov both seem to reverse mesangial cell hypocontractility. The process of Sim reversal of mesangial cell hypocontractility may involve F-actin, TCP-1beta, and GRP78. Copyright (c) 2010 Mosby, Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          Translational Research
          Translational Research
          Elsevier BV
          19315244
          August 2010
          August 2010
          : 156
          : 2
          : 80-90
          Article
          10.1016/j.trsl.2010.05.006
          20627192
          4b91e7be-9279-4acb-adf1-0d5d84d8b24f
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article