0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Astrocyte senescence and SASP in neurodegeneration: tau joins the loop

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Ageing as a risk factor for neurodegenerative disease

          Ageing is the primary risk factor for most neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD). One in ten individuals aged ≥65 years has AD and its prevalence continues to increase with increasing age. Few or no effective treatments are available for ageing-related neurodegenerative diseases, which tend to progress in an irreversible manner and are associated with large socioeconomic and personal costs. This Review discusses the pathogenesis of AD, PD and other neurodegenerative diseases, and describes their associations with the nine biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion and altered intercellular communication. The central biological mechanisms of ageing and their potential as targets of novel therapies for neurodegenerative diseases are also discussed, with potential therapies including NAD+ precursors, mitophagy inducers and inhibitors of cellular senescence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Astrocytes: biology and pathology

            Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.

              A major mechanism in the cellular defense against oxidative or electrophilic stress is activation of the Nrf2-antioxidant response element signaling pathway, which controls the expression of genes whose protein products are involved in the detoxication and elimination of reactive oxidants and electrophilic agents through conjugative reactions and by enhancing cellular antioxidant capacity. At the molecular level, however, the regulatory mechanisms involved in mediating Nrf2 activation are not fully understood. It is well established that Nrf2 activity is controlled, in part, by the cytosolic protein Keap1, but the nature of this pathway and the mechanisms by which Keap1 acts to repress Nrf2 activity remain to be fully characterized and are the topics of discussion in this minireview. In addition, a possible role of the Nrf2-antioxidant response element transcriptional pathway in neuroprotection will also be discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cell Cycle
                Cell Cycle
                Informa UK Limited
                1538-4101
                1551-4005
                April 18 2021
                April 05 2021
                April 18 2021
                : 20
                : 8
                : 752-764
                Affiliations
                [1 ]Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
                [2 ]Department of Comparative Pathobiology, Purdue University, West Layfette, Indiana, USA
                [3 ]University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
                [4 ]Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
                Article
                10.1080/15384101.2021.1909260
                33818291
                4b7e91df-a11f-495a-bffc-79c59e84f25c
                © 2021
                History

                Comments

                Comment on this article